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LEADER-FOLLOWER MEAN FIELD LQG GAMES WITH MULTIPLICATIVE NOISE:
THE DIRECT APPROACH*

BING-CHANG WANG t, HUANSHUI ZHANG ¥, AND JI-.FENG ZHANG §

Abstract. This paper studies open-loop and feedback solutions to leader-follower mean field linear-quadratic-Gaussian
games with multiplicative noise by the direct approach. The leader-follower game involves a leader and many followers, where
the state and control weight matrices in their costs are not limited to be positive definite. From variational analysis with mean
field approximations, we obtain a set of open-loop controls in terms of solutions to mean field forward-backward stochastic
differential equations. By applying the matrix maximum principle, a set of decentralized feedback strategies is constructed.
Different from traditional works, a cross term has appeared in derivation due to the presence of mean field terms. For open-loop
and feedback solutions, the corresponding optimal costs of all players are explicitly given in terms of the solutions to two Riccati
equations, respectively.
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1. Introduction.

1.1. Background and Motivation. Mean field (MF) games have drawn much attention from various
disciplines including control theory, applied mathematics and economics [30], [10], [12], [16]. In an MF
game, the impact of each individual is negligible while the effect of the population is significant. The main
methodology of MF games is to replace the interactions among agents by population aggregation effect,
which structurally models the MF interactions in large population systems. Thus, the high-dimensional
multi-agent optimization problem can be transformed into a low-dimensional local optimal control problem
for a representative agent [30], [12]. Wide applications have been found in many fields, such as economics
[55], [48], smart grid [44], engineering [29] and social sciences [3], [14]. As a classical type of MF models, mean
field linear quadratic Gaussian (MF-LQG) games are intensively studied due to their analytical tractability
and close connection to practical applications. For works on such kind of problems, readers can refer to [6],
[19], [24], [31], [45], [51], [54]. The pioneering work [23] studied e-Nash equilibrium strategies for MF-LQG
games with discounted costs based on the Nash certainty equivalence. This approach was then applied to the
cases with long run average costs [31] and with Markov jump parameters [51], respectively. For MF games
with major players, the works [22], [13] considered continuous-time LQG games with complete and partial
information; [52] investigated discrete-time LQG games with random parameters; [11] and [41] focused on
the nonlinear case.

In contrast to the above models, the leader-follower (Stackelberg) game involves a leader-follower struc-
ture. Consider a leader-follower game with two layers. One layer of players are defined as leaders with a
dominant position and the other players is defined as followers with a subordinate position. The leader has
the priority to give a strategy first and then followers seek strategies to minimize their costs with response to
the strategies of leaders. According to followers’ optimal response, leaders will choose strategies to minimize
their costs. Leader-follower games have been widely investigated in the literature (see e.g. [42], [58], [7], [56],
[20]). Recently, leader-follower MF games have attracted great research interest [9], [53], [34], [5], [57]. The
work [9] considered MF Stackelberg games with delayed instructions. [53] studied discrete-time hierarchical
MF games with tracking-type costs and gave the e-Stackelberg equilibrium. Authors in [34] investigated
continuous-time MF-LQG Stackelberg games by the fixed-point method, and they asserted that “complexity
brought by coupling among leader and followers makes the use of direct approach almost impossible”. This
work is further generalized to the jump diffusion model [33]. Besides, [57] investigated feedback strategies of
MF Stackelberg games by solving the master equations.
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Different from noncooperative games, social optimization is a joint decision problem where all players
work cooperatively to optimize the social cost. This is a typical class of team decision problem [18]. Authors
in [24] studied social optima in the MF-LQG control, and provided an asymptotic team-optimal solution,
which is extended to the case of mixed games in [25]. The work [54] investigated the MF social optimal
problem where the jump parameter appears as a common source of randomness. More investigation can
be found in [2] for team-optimal control with finite population and partial information, [39] for dynamic
collective choice by finding social optima, [40] for stochastic dynamic teams and their MF limit, [46], [21]
for MF teams with uncertainty in drift and volatility, and [35] for social control applications in economics.
Besides, see [47] for value-iteration learning in ergodic MF-LQG social control, and [26] for online policy
iteration in MF Pareto optimal control.

Normally, there are two routes to solve MF games and teams. One is called the fixed-point approach
[23, 24, 10, 16], which starts by applying MF approximation and constructing a fixed-point equation. A set
of decentralized strategies can be designed by tackling the fixed-point equation together with the optimal
response of a representative player. In general, the fixed-point equation is difficult to solve. In addition, when
solving the team problem by the fixed-point approach, an additional variable (called social impact [24, 54])
needs to be introduced. This leads to a drastic increase of computational complexity for MF teams with
multiplicative noise [38], [17]. Another route is called the direct approach [27, 30, 49], which takes a path
from finite-population to infinite-population systems. By decoupling the Hamiltonian system for N-player,
one can obtain a centralized strategy which explicitly relies on the state of a player and population state
average. Applying MF approximations, the decentralized control can be constructed. By the direct approach,
the resulting control is neat and less computation is required, particularly for team problems [49].

1.2. Contribution and Novelty. This paper considers MF-LQG Stackelberg games with a leader and
many followers, where the state and control weight matrices in their costs are allowed to not be positive
definite. The leader first give his strategy and then all followers cooperate to optimize the social cost, the
sum of individual costs. For instance, consider an example of macroeconomic regulation, where the regulator/
government is the leader, and local authorities are followers [37]. The state of the leader appears in both
dynamics and cost of each follower. It shows that the dynamics and costs of followers are directly influenced
by the behavior of the leader. Different from [25] and [34], our model involves population state average (™)
in both drift and diffusion terms in followers’ dynamics. Owing to the presence of indefinite cost weights
and multiplicative noise, the control design and analysis get more difficult. Convex analysis is needed for
the leader-follower MF-LQG problem. In particular, the convex analysis for leader’s problem is challenging,
since the system is driven by a set of coupled forward-backward stochastic differential equations (FBSDEs).

By the terminology of [8], the solutions to Stackelberg games are mainly divided into open-loop, closed-
loop and feedback (closed-loop memoryless) solutions. The Stackelberg solution under closed-loop information
pattern cannot be solved by utilizing the standard techniques of optimal control theory (See [8, p. 376]).
However, the feedback solution to Stackelberg LQG games with strictly convex cost can be determined in
the closed form. Compared with the open-loop solution, there exists stronger coupling among the feedback
strategies of the leader and numerous followers in MF games. Additionally, the MF coupling among players
bring about more difficulty in strategy design. Until now, most previous works focused on open-loop solutions
of MF leader-follower games, and only a few works were on feedback and closed-loop solutions. Furthermore,
the relationship among different solutions is still unclear.

In this paper, we study systematically open-loop and feedback solutions to MF leader-follower games
by the direct approach. The open-loop solution starts with solving a centralized social control problem for
followers, and obtaining a system of high-dimensional FBSDEs. By MF approximations, a set of open-loop
controls of followers is designed in terms of an MF FBSDE. After applying followers’ strategies, we derive
necessary and sufficient conditions for the solvability of the leader’s problem, and then obtain the feedback
representation of the open-loop control by decoupling an FBSDE. From perturbation analysis, the proposed
strategy is shown to be an (g1, e2)-Stackelberg equilibrium. Furthermore, we obtain the optimal costs of
players in terms of the solutions to Riccati equations. Next, the feedback solution is investigated for MF
Stackelberg games. Different from the open-loop solution, we presume that the leader has a strategy with the
feedback form. With leader’s feedback gain fixed, we obtain the feedback strategies of followers by decoupling
high-dimensional FBSDEs. Applying the matrix maximum principle with MF approximations, we solve the
optimal control problem for the leader, and then construct a set of decentralized feedback strategies for all
players. By the technique of completing the square, we show that the proposed decentralized strategy is a
feedback (e1,¢e2)-Stackelberg equilibrium and give an explicit form of the corresponding costs of players.
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The main contributions of the paper are listed as follows.

e By adopting a direct approach, we explore the open-loop and feedback solutions to indefinite leader-
follower MF games with multiplicative noise. Different from the fixed-point approach, no additional
terms are introduced when MF social control problem is solved for followers.

e By variational analysis with MF approximations, we obtain an open-loop asymptotic Stackelberg
equilibrium in terms of MF FBSDESs, which can be implemented offline.

e By decoupling high-dimensional FBSDEs and applying the matrix maximum principle, a set of
decentralized feedback strategies is constructed. Different from traditional works, a cross term has
appeared for deriving feedback strategies due to the presence of MF coupling.

1.3. Organization and Notation. The paper is organized as follows. In Section 2, we formulate
the problem of MF-LQG leader-follower games with multiplicative noise. In Section 3, we first obtain a
set of open-loop control laws in terms of MF FBSDEs, and give its feedback representation by virtue of
Riccati equations. In Section 4, we design the feedback strategies of MF Stakelberg games and provide the
corresponding costs of all players. In Section 5, we give a numerical example to demonstrate the performance
of different solutions. Section 6 concludes the paper.

Notation: Throughout this paper, let (Q, F, {F:}o<i<7,P) be a complete filtered probability space aug-
mented by all P-null sets in F. |- | is the standard Euclidean norm and (-,-) is the standard Euclidean
inner product. For a vector z and a matrix Q, 2] = 2"Qz; Q@ > 0 (Q > 0) means that the matrix
Q is positive definite (positive semi-definite). Q' is the Moore-Penrose pseudoinverse' of the matrix Q,
R(Q) denotes the range of a matrix (or an operator) Q. Let C(0,T;R™*™) be the set of R™*"-valued
continuous function and L%(0,T;R™) be the set of all {F};>¢-adapted R™-valued processes z(-) such that
|z(t)[]3, =: EfOT |lz(t)||?dt < oo. For a symmetric matrix S > 0, the quadratic form x7 Sz is defined as
|z||%, where 7 is the transpose of z.

2. Problem Formulation. Consider a large-population system with a leader and N followers. The
state processes of a leader and N followers satisfy the following stochastic differential equations:

dzo(t) =[Aozo(t) + Bouo(t)]dt + [Cozo(t) + Doug(t)]dWo(t),
(2.1) < dai(t) =[Az;(t) + Bug(t) + Gz™N) (t) + Fao(t)]dt + [Cai(t) + Dus(t) + Gz (t) + Fao(t)|dWi(t),
5170(0):&), xz(o):é-za 221727 7N7

where zg € R™ ug € R™° are the state and input of the leader, and z; € R",u; € R™ are the state and

input of the ith follower, i = 1,---, N, respectively. z(V)(t) £ % Zfil x;(t) is the state average of all

the followers. {Wo(-),W1(-), -+, Wn(:)} are a sequence of independent d-dimensional standard Brownian
motions defined on the space (2, F, {F; }o<i<7, P). Let Fr = o (o, & Wo(s), Wi(s),0<s<t,i=1,---,N)).
Denote Fy = o (&, Wo(s),0 < s < t) and F} = (&, &, Wo(s), Wi(s),0 < s < t) fori =1,---,N. The
admissible control set for the leader is defined as follows: Uy = {uolu(t) € LQE0 (0,T;R™)}. The admissible
decentralized control set for all the followers is defined by '

Us ={ (1, un)lus(t) € L2 (0, T R™), i = 1,0+ N |,
Also, the centralized control set for followers is given by
Ue = {(wn,- - un)lu(t) € L3, (0, T5R™),i =1, , N .
For the leader, the cost functional is defined by
T
(2.2) Jo(ug, u) :IE/ Uxo(t) — Fox(N)(t)%o + |u0(t)|%0]dt + E[|x0(T) — oz (T)\%IO],
0

where Qg, Rp and Hj are symmetric matrices with proper dimensions, and v = (u1,--- ,un). For the ith
follower, the cost functional is defined by

(2.3)  J;(ug, u) :E/O [Jzi(t) = Ta™ (&) = Tyzo ()3 + ui(t)| %] dt + E[|zi(T) — Ta™(T) — Tya0(T)|% ]

Q' is a unique matrix satisfying QQTQ = QF,QTQQ"T = Q,(QTQ)T = QTQ, and (QQTT = QQ'. See [36] for more

properties of pseudoinverse.
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where @, R and H are symmetric matrices with proper dimensions. All the followers cooperate to minimize
their social cost functional, denoted by

N
1
(2.4) T8 (ug, u fﬁz (ug, u

Now we make the following assumption.

(A1) {z;(0)} and W;(t),i = 1,2,--- , N are independent of each other. Ezy(0) = & and Ez;(0) = ¢,
i =1,---,N. There exists a constant ¢y such that sup,_; 5 ... x E|z;(0)|? < ¢g, where ¢ is independent of
N.

We next discuss the decision hierarchy of the Stackelberg game. The leader holds a dominant position in
the sense that it first announces its strategy ug, and enforces on followers. The N followers then respond by
cooperatively optimizing their social cost (2.4) under the leader’s strategy. In this process, the leader takes
into account of the rational reactions of followers.

Due to accessible information restriction and high computational complexity, one generally is not able
to attain centralized Stackelberg equilibria, but only achieve asymptotic Stackelberg equilibria under decen-
tralized information patterns.

We now introduce the definition of the open-loop (€1, €2)-Stackelberg equilibrium. From now on, the
notation of time ¢ may be suppressed if necessary.

DEFINITION 2.1. A set of control laws (ug,ul,--- ,ul) is an open-loop (€1, €2 )-Stackelberg equilibrium if
the following hold:
(i) When the leader announces a strategy uj(-) € Uy over [0,T], u* = (uf,--- ,ul) attains an €1 -optimal

response, i.e.,
T30 (g, u) < I (g, u) + €1, for any u € Ue,

(ii) For any uy € Uy, Jo(ud, u*(us)) < Jo(ug,u(up)) + €2, where u* and u are e;-optimal responses to
strategies ufy and wg, respectively.
Inspired by [8, 27, 49], we consider feedback strategies with the following form:

ug =Pyxo + Pz,
(2.5) - =
u;, =Kz; + Kz + Koxg, i =1,--- ,N

where Py, P, K,K,K, € Lo (0, T; R™™ ™); a9, x; and T satisfy

dzg = [Aowo + Bo(Pozo + PZ)|dt + [Cozo + Do(Pozo + PZ)|dW,
dz; = [Az; + B(Kz; + K 4+ Kozo) + Ga™N) + Fu)dt

(2.6) + [Czi + D(Kx; + Kz 4+ Koxo) + Ga™Y) 4 Fo)dW;,

di = {[A+ G+ B(K + K)]z + (F + BKg)xo }dt,

20(0) = &, 2:(0) =&, i=1,2,--- N, (0) =&

In the above, Z = E[z;|F?] is an approximation of z(N) for sufficiently large N.
We now introduce the definition of the feedback (€1, €2)-Stackelberg equilibrium.

DEFINITION 2.2. A set of strategies (ti, ti1, - ,ln) is a feedback (e, €z)-Stackelberg equilibrium if the
following hold: -
(i) When the leader announces a strategy o = Poxo + PZ at time t, & = (G, -+ ,0N) attains an

e1-optimal feedback response, i.e.,
TN (g, 1) < TN (g, u) + €1, for any u € U,

where both 1; and u; have the form f(ml +Ki+ Kyzg, i =1,...N;

(ii) For any ug € Uy, Jo(tio(tg), ) < Jo(ug,u(ug)) + €2, where ug has the form Pyxg + PZ; 4 and u are
e1-optimal feedback responses to strategies g and ug, respectively.

In this paper, we study open-loop and feedback solutions to Problem (2.1)-(2.4), respectively.

(PO) Seek an open-loop (€1, €2)-Stackelberg equilibrium over decentralized control sets Uy, Ug;

(PF) Seek a feedback (e, €2)-Stackelberg equilibrium in the form of (2.5).
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3. Open-loop Solutions to Leader-Follower MF Games.
3.1. The MF Social Control Problem for N Followers. Denote

Qr 2 Qr +17Q - 17Qr, Hy 2 HI + ITH — I'THT,
Qr, = (I-T)7Qry, Hy = (I-1)THE,.

Suppose ug is fixed. We now consider the following social control problem for N followers.
(P1): minimize Jsoc over u € U,, where

N T N
1 1 . 3
TN (u) =% Z]E/O “xi — Tz — F1x0|2Q + |ui\%,} dt+ < > B[ (1) — Ta™(T) = Tyao(T)3]
i=1 i=1

By examining the social cost variation, we obtain the optimal control laws for N followers. The proof is
similar to that of Theorem 3.1 in [49], and hence omitted here.

THEOREM 3.1. Problem (P1) admits an optimal control if and only if JXN is convex in u and the following

system of FBSDEs admits a set of adapted solutions {z;,pi,ql,i,j =1,--- ,N}:

dz; = (Az; + Bi; + Ga™N) + Fag)dt + (Cx; + Di; + Ga™) + Fao)dW;,

N
(3.1) dp; = —(A"p; + GTpMN) 1 cTqi + GT¢™) + Qu; — Qra™) — erxo)dt+z ql dW;,

Jj=0

where pN) = % Zjvzl Djs gV = % Zjvzl qj, and the optimal control laws of followers u; satisfy
(3.2) Riu; +BTp; + DT¢i =0, i=1,--- ,N.

The above theorem gives an equivalence between the solvability of Problem (P1) and that of an FBSDE
under the convexity assumption. We refer to the backward equation in (3.2) as the adjoint equation of (1.1).
Condition (3.2) can be regarded as the stationarity condition in Pontryagin’s maximum principle. Indeed,

if Jgp is uniformly convex in u, then Problem (P1) admits an optimal control necessarily [60]. For further
existence analysis, we assume

(A2) JS(CJ)\CI) is uniformly convex in u.

Remark 3.2. The uniform convexity of J& in Problem (P1) can be verified by virtue of the solvability
of Riccati equations (See e.g., [43], [49]). Particularly, if @ > 0 and R > 0, then A2) holds.

Denote Exol] = E[-|F?]. Letting N — oo, by the MF methodology [23], [30], we can approximate &;, p;
in (3.1) by Z;, p;, i = 1,--- , N, which satisfy
dz; = (Az; + Bu} + GExo[z;] + Fxo)dt + (CZ; + Du} + GExo[z;] + Fxo)dW;,
dp; = —(A"pi + G"Exo[pi] + CTq + G"Exo[q)] + Q2 — QrExo[Z;] — Qr,xo)dt
+ @, dW; + 3 dWy,
z;(0) =&, i=1,--- N, pi(T) = Hz;(T) — HpExo[z;(T)] — Hp 20(T),

(3.3)

with the decentralized control u} satisfying the stationarity condition
(3.4) Ru! + B™p; + DTg =0, i=1,--- ,N.

We now use the idea inspired by [32], [59], [50] to decouple the FBSDE (3.3). Let p; = PZ; + KE zo[Z;] +
p, i =1,---,N. Then, we have
dp; = Prydt +dp+ P {(A:m— + Bit; + GEpo[] + Fao)dt + (CZ; + Dit; + GEro[2:] + Fao)dW;
+ KEzo[2;]dt + K [(A+ G)Exo[2;] + BE o [t;] + Fao|dt
B0 [AT(Pai+ KEolai) + ) + CTIgl) + GT((P+ K)Eolai] +9) + G E ]

+ Q7 — QrExo[Z;] — Qr, 330] dt + q.dW; + ) dWy,
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which implies
(3.6) @, = P(C%; + Du; + GExo[z;] + Fx), i =1,--- ,N.
This together with (3.4) leads to

Ru} + BT (Pz; + KEzo[%;] + ¢) + DT P(C%; + Di; + GExo[Z;] + Fxg) = 0.
Let Y £ R+ DTPD. If R(BT) UR(DTP) C R(Y), then we have
(3.7) uj =—Y'[(BTP+ D"PC)z; + (B'K + DT PG)Exo[z;] + B ¢ + DT PFxo).
This together with (3.5) gives

(3.8) P+ ATP 4+ PA+CTPC+Q— (B"P+DTPC) !(BTP + DTPC) = 0, P(T) = H,
(3.9) K+(A+GQ)T"K+KA+G)+G"P+PG—Qr+CT"PG+GTP(C+G)
— (B"P+DTPC)'YY(BTK + DT PG) — (B"K + DT PG)TYT(BT P + DT PC)

— (BTK + D"PG)"'Y!(BTK + D" PG) =0, K(T) = —Hj,
(3.10) dp+{[A+G~ BY'(BT(P+ K) + D"P(C + G))] ¢+ [(P+ K)Fp
+(C+G)'PFp — er]mo}dt —q7dWo =0, o(T) = foleo(T),

where Fg 2 F — BY'DTPF and Fp & F — DYTDT PF. We assume
(A3) Equations (3.8)-(3.10) admit a set of solution (P, K, ) such that T > 0, and

(3.11) R(BT)UR(DTP) C R(Y).
Let IT = P + K. Then II satisfies

(3.12) M+ (A+G)TTI+T(A+G) — [B"TI+ D" P(C + @) YT [BTTI + DT P(C + G)]
+(C+G)"PC+G)+Q—-Qr=0, I(T) = H — H:.

Note that if Q >0 and H >0, then Q — Qr = (I - I)TQ(I —T) >0 and H — Hp > 0. Thus, when @ > 0,
R >0and H > 0, (3.8) and (3.12) admit a unique solution, respectively. This implies (3.9) has a unique

solution, which further gives (A3).
From the above discussion, we have the following result.

PROPOSITION 3.3. Under (A3), the decentralized control given by (3.4) has a feedback representation

(3.7).

Applying (3.7) into (3.3), we obtain that & = Exo[Z;] satisfies

(3.13) dz = [(A+G - BY'BTIl - BY'DTP(C + G))z — BY'BTp + (F — BY'DPF)z,]dt.

3.2. Optimization for the Leader. Denote A = A—BY!(BTP+DTPC), and C 2 C-DYYBTP+
DT PC). After applying the control laws of followers in (3.7), we have the following optimal control problem

for the leader.
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(P2): minimize Jo(uo, u*(uo)) over ug € L% (0,T;R™), where

Jo(uo, u” (ug)) = E / " oo = Toa™ B, + o, )db + Eflao(T) - Fort(T)13, ],
dxo = (Aozo + Boug)dt + (Coxo + Doug)dWo, 12¢(0) = &,
(3.14)
dz; = [Ax; + Ga\™) — BY'((B"P + D" PC)%; + (B"K + D" PG)z + BT ) + Fyao)dt
+ [Cat + G2 — DYT((BTP + DTPC)z; + (BTK + DT PG)Z + By) + Fpxo|dW;,
7 (0) = &,

do = _{ [A+G - BY!(BTK + DTPG)| ¢+ [(P+ K)Fp + (C + Q)T PFp + (T — I)TQFl]mo}dt
+q)dWo, (T) = (I = )" HTy20(T),
where z] is the realized state under the control u},< = 1,--- , N, and xSFN) = % Zf\il x¥. From (3.15), we
have

de™ =[(A+ @)™ — BYT((BTP + DT PC)z™) + (BTK + DT PG)Z + BT ) + Fgao|dt

N
1 ~ _ _
+5 " [0} + Gal™ — DYN(BTP + DT PC)z; + (BTK + DT PG)z + By) + Fpao|dW;,
1=1

(N) 1o
N _— .

where z(V) = L vazl Z;. Note that {W;} are independent Wiener processes and {x;(0)} are independent

r.v.s. For the large population case, it is plausible to replace V), xiN) by Z, which evolves from (3.13).
Then we have the limiting optimal control problem for the leader.
(P2"): minimize Jo(ug, u*(ug)) over ug € Up, where

T
(316) Jo(uO7’U,*(’U,Q)) ZE/O Ul‘o — Foi"éo + |U0|%O]dt + ]EU.’L’O — Fo.f'(T)ﬁgo],

subject to
dxo =(Aoxo + Bouo)dt + (Coxo + Doug)dWo, x0(0) = &o,
dz =[(A+G)z — BY'BTp + (F — BY'DT PF)x)dt, 7(0) =&,
- {(A +G) o+ [(P+K)Fp +(C+G)TPFp+ (I - I)TQl“l]a:O}dt
+q)dWo, o(T) = (T — )" HT12o(T).

(3.17)

de

with G 2 G — BY!(BTK + DTPG).

We first provide the condition under which Problem (P2’) is convex. The proof is similar to [19], [49],
and so omitted here.

LEMMA 3.4. Jo(ug,u*(ug)) is convez in ug if and only if J§ (ug,u*(ug)) > 0, where

Jo (uo, u*) =E /OT (|28 — Toz° (3, + |uolk, |dt + E[|20(T) — Toz*(T)|%, ],
subject to
dzd =(Agzy + Boug)dt + (Cox§ + Doug)dWy, x0(0) =0,
dz® =[(A+ G)z° — BY'BT¢" + (F — BY'DT PF)a]dt, z°(0) =0,
ag® == {(A+G) 6"+ [(P+ K)Fp + (C + )" PFp + (U = )T QT ]f bat
+¢%awy, O2T) = (T — )T HT 23(T).

(3.18)
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We now give the following maximum principle for (P2’).
~ THEOREM 3.5. Assume (A1)-(A8) hold. Problem (P2') admits an optimal control uf if and only if
Jo(uo, u*(up)) is convez in ug, and the following FBSDE
dyo = — {ATyo + CZ o+ (F — BY'DTPF)T§ + [(P+ K)Fp + (C + G)TPFp — Qr,] " ¢
+ Qolaf — Toz*) }dt + BodWo,yo(T) = Ho(zo(T) — Toz*(T)) — Hlew(T),
dy = — [(A+ G)"y = T§ Qolaf — To™)] + BdWo, §(T) = —T§ Ho(a5(T) — Loz™ (1)),
dip =[(A+ G)p — BYTBTg)dt, 4(0) =0

(3.19)

has a solution such that uf satisfies Roug, + Byo + DI By = 0.
Proof. Suppose {ug} is a candidate of the optimal control of Problem (P2'). Let zfj and Z* be the leader’s
state and followers’ average effect under the control {u§}. Note that

(3.20) Jo(ufy 4 Oug, u(uf + Oug)) — Jo(uh, u*(ug)) = 2011 + 621,
where
T
(321) Il :]E/ [<Qo(l‘8 — Fof*),[ﬂg — 1—\0:20> + <U3, RoU0>:|dt
0

+E[(Ho(3(T) — Doz*(T)), 20(T) — Loz (T))],
T
(3.22) I :IE/O [[2§ — Toz°|3, + |uol%, |dt + E[|z(T) — Toz®(T)|%,]-

Note that for the given xf and z*, FBSDE (3.19) admits a unique solution (One can solve BSDE for (7, )
first, then solve FSDE for ¢ and finally solve BSDE for (yo,50)). From (3.18) and (3.19), applying Ito’s

formula, we obtain
(3.23) E[(Ho(x — Loz*) + T H (I = D)o(T), 24(1))] = El{yo(T), 20(T)) — (y0(0), 25(0))]
=K /OT {< — [(F = BY'D"PF)"y + (B{ yo + D§ Bo, o) + [(P + K)Fp + (C + G)" PFp
+ (T = DTQT ] Y + Qola} — Toz™)], x8>}dt,
(3:24) — E[(0F Ho(xg — Doz*), 2°(T))] = E[F(T), 2°(T)) — (5(0), 2°(0))]

T
=E / (T8 Qo(zo — Toz),2°) — (BYTBg,¢% + (F — BY'D"PF)"g,20)]dt.
0

and
(3.25) E[(I' — DT HT12(T), »(T))] = E[("(T), ¥(T)) — (¢°(0),(0))]
T
:E/ [(—BTTBTQ, ") —([((P+ K)Fp + (C+G)"PFp + (I — I)Ter]Tz/), x8>] dt.
0

T
From (3.21) and (3.23)-(3.25), it follows that I, :]E/ (B yo + D§ Bo + Rufy,ug)dt.  Note that 6 is arbi-

trary. By (3.20), ufy is a minimizer of (P2’) if and only? if 1 =0and I > 0. Indeed, if 5 > 0 does not hold,
then there exists some iy € Uy such that JQ(ig,u*) < 0. Then we have JQ(kig,u*) = k2JQ (1, u*) — —o0
(k — o0), which implies the minimization problem should be ill-posed.  Thus, by Lemma 3.4, uj is an
optimal control of (P2’) if and only if Ruj + Bl yo + DE By = 0 and Jy(ug, u(ug)) is convex in ug. O
Let X = [x(’l;?ij wT]Tvy = [ygu QT7 (PT]T’ Z = [BngT7 (q?)T]T’ By = [357 0, O]TﬂDO = [ng& 0]T7 and

Ao o 0 R 0 0 0 0
A= | F-BY'DTPF A+G 0 B=10 0 BY'BT |,
0 0 A+ G 0 BY'BT 0
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Co 0 0 Ho —Hol'y TTH(I —1)
Co = 0 0 0 ,Ho == —FgHO FgHoro 0 5
0 00 (T —THT, 0 0
[ —Qo Qolo IrfQU —T)— FLII]
~-FLP(C+G)
Q= I'f Qo —I'§QoTo 0

(I -T)7QT; —IIFp
—(C +G)PFp 0 0

With above notations, we can rewrite (3.17) and (3.19) as

(3.26) {dX = (AX = BY + Boug)dt + (CoX + Doug)dWo, X(0) = [&5, ", 0"

dY = (X — ATY — ¢l Z)dt + ZdWy, Y (T) = Ho X (T),
together with the condition
(3.27) Rougy +BYY + DL Z = 0.

We now provide a sufficient condition to guarantee the solvability of (3.26).
PROPOSITION 3.6. Denote Yo=Rg + DI PDy. If the equation

(3.28) P+PA+ATP 4+ CIPCy — Q — PBP — (BLP + DIPCo) " 1§ (BIP + DEPC,y) = 0,

with P(T) = Ho has a solution in [0,T], then FBSDE (3.26) is solvable.
Proof. Let Y = PX and Z = P[Cy — DITI(BIP + DI'PCo)| X, where P is a solution to (3.28). Let
ug = —T%(BOT’P + DI'PCy)X. Denote Y =Y —Y and Z = Z — Z. Then a direct computation shows

dY =[(PB — ATY — CL Z)dt + ZdW,, Y(T)=0.

It is clear that such a backward SDE admits a unique solution ¥ = Z = 0 ([32]). Hence, Y = PX and
Z =P[Co — DEYH(BYP + DIPCy)] X. Then FBSDE (3.26) admits an adapted solution. O

Remark 3.7. Note that B, Q and H( are symmetric matrices. We find that (3.28) is a symmetric Riccati
equation. The existence condition of its solution may be referred in [1], [32].

For further analysis, assume

(A4) Equation (3.28) admits a solution in C[0, T;R3"].

Under (A4), we construct the following decentralized control laws

(3.29) {u;; =—71i(BIP +DIPCy)X,

uy =="T'[(B"P+D"PC)z; + B¢+ D" PFaj + (B K + D" PG)E ro[7;]]
where X, Z; is given by (3.26), (3.3), and z{ is the realized state under the control wg.

THEOREM 3.8. Assume that (A1)-(A4) hold. Then (ul,ui,---,0*) given in (3.29) is an open-loop
(1, €2)-Stackelberg equilibrium, where ¢; = O(1/v/N), i =1,2.

Proof. See Appendix A. d

THEOREM 3.9. For Problem (PO), assume (A1)-(A4) hold, and &,i=1,--- , N have the same variance.
Under the control (3.29), the corresponding social cost is given by

(3.30) Js(é\p (u*,up) = E[‘fiﬁ?(o) + ‘50|§<(0) + Q@T(Oﬁo] + s,

and the asymptotic cost of the leader is limy_,o0 Jo(uf, u*) = E[Lyo(0) + ET5(0)], where
T — —

(3.31) st :]E/O [[Faolp — BT + DT PFag|3s + 20" Fao + T3] dt.

Proof. See Appendix B. O
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4. Feedback Solutions to MF Leader-Follower Games. In this section, we consider the feedback
solution to the MF Stackelberg game (2.1)-(2.4). For simplicity, we consider the case that @ > 0, Qo >
0, R>0, Ry >0, H>0and Hy > 0.

4.1. The MF Social Control Problem for N Followers. Note that the leader plays against all
followers. Assume that the leader admits a feedback control of the following form

(4.1) ug = Poxg + P.’L‘(N),

where Py and P are fixed. Thus, we have the following social control problem for N followers.
(P3): minimize JE (u) over u € U,, where ug = Pyzg + PxN) and

(4.2) J&) Z]E/ {yxi_m ) F1x0|Q+|uz|R}dt+ Z]E |2(T) — T2™(T) — Dyzo(T) %]

By examining the social cost variation, we obtain the optimal control laws for N followers.

THEOREM 4.1. Suppose @ > 0, R > 0 and H > 0. Assume the leader has the feedback control (4.1).
Then Problem (P3) has an optimal control in U if and only if the following system of FBSDEs admits a set
of adapted solutions {z;,pi,q’,i,j =0,1,--- ,N}:

de = [AO-rO + BO(POIO + pﬂf(N )] dt + [COIO + DQ(P().TO + PI )] dWo,
dx; =(Ax; + Bi,; + Gz 4+ Fxo)dt + (Cx; + Du,; + Gz + Fxg)dW;,
dpo = — [(Ao + BoPo)" po + FTpWN) 4 (Co + DoPy)q) + FT ¢
N
—QF, ™) +TTQT120)] + > qfdW.
(4.3) =0
' dp; = — [ATp; + GTp™) + PTBIpy + CTgi + GT¢™ + PTDI ¢
N
+Qu; — Qrat™) — Qr,T1xo]dt + Z qldw;,
=0
0(0) = &0, :(0) = &, po(T) = —HE 2™(T) + TT HT 120 (T),
pi(T) = Ha;(T) — Hpa™W)/(T) — Hyp 2o(T), i=1,---,N.

Furthermore, the optimal controls of followers are given by

(4.4) it; = —R(B"p;+D"q}), i=1,--- ,N.

Proof. See Appendix C. O

Remark 4.2. For the feedback solution case, the term V) appears in leader’s dynamics. Different from
the open-loop case, an additional costate py is needed. Indeed, as u; is perturbed with du;, the changing
magnitude of (V) is O(||0us]|/N), which causes the perturbation O(||du;||) of Jsoc(u). This is evidently
different from the game problem.
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337 Define

My + ATMy + MEA + CTMyC + Q — (BT My + DT MyC)T TR
x (BT My + DT MyC) =0, My(T) = H,

My + (A+G) My + My(A+G) + GT My + MyG + CT MG
+ G My (C +G) — Qr + PTDIAY Do P + MY ByP + PT BT Ay
— (B"My + DT NN C) Y3 (BT My + DT My G)

338 (4.5) — (BMy + D" MyG) Y (BT My + DT My C)

— (BMy + DT MyG) Y3} (BT My + DT MyG) = 0, My(T) = —Hy,
MY+ (A+ G MY + MY (Ag + BoPy) + (My + My)F + PTBTAY
— [BT(My + My) + DY My (C + )P YN (BT MY, + DT MF)
+(C+ G)'MxF + PTDIAY (Co + DoPy) + (I — I)TQTy =0,

MR(T) = (F — )" HT,

339

AR + A% (Ao + BoPo) + (Ao + BoPo) " AR + (Co + DoPo)" A (Co + Do Py)
— (BTAL + DMy F)'YH(BT MY, + DT My F)
+ ANF 4+ FTMY + FTMF +17Qr, =0, A%(T) =TTHT,,

340 (4.6) - _ - _ _
AN +AN(A+G) + (Ao + BoPo)"Ax + FT'(My + My) + A% By P
— (BTAL + DMy F)' Y BT (My + My) + DT My (C + G)]
+ FTMy(C+G)+TTQ( — 1) =0, AN(T) =TTH(T - I).
341 PROPOSITION 4.3. Assume (A1) holds, and (4.5)-(4.6) admit solutions, respectively. Then, Problem

342 (P3) admits a feedback solution (4.9).
343 Proof. Let py = A9V$0+]\N$(N), and p; = MN;UZ-—I—MNQC(NH—MR[:Um i=1,---,N.Denote 4™ = % Zf\;l Uj.
344 By applying It6’s formula to p;, we have

345 (47) dp; :MNJ,‘idt + My [(AJ,‘Z + Bu; + G.Z‘(N) + Fl‘o)dt + (Cxl + Du; + éx(N) + F&'Jo)dWJ
N
- _ 1 — —
346 + Myz™ + My [(A +@)z™ + Ba™N) 4 Fag)dt + N > (Czj + Dij + Ga™) + Fmo)dW]}
Jj=1

347 + M}%T,odt + MR] [(Aodfo + By (P()ZCO + Pl‘(N)))dt + (Col‘o + Dy (Po[l)o + pd?(N)))dWO]
348 =— [AT(MN;L‘Z‘ + Myz™ + Mlova:o) + GT((MN + MN)x(N) + MR,:EO) + PTBOTpO
N
349 +CTqi + G"¢™) + PTDI ¢) + Qui — Qra™ + (I — )T QIyao]dt + > gl dW;,
§=0

350  which together with (4.3) implies

, 1 _ _ _
g =(My + = My)(Cz; + Dit; + Gz'™) + Fay),
‘ N
351 (4.8) o
¢] =~ My (Cj + Ditj + Ga™ + Fuo), j #1i.
352 By (4.4), we have for any i =1,--- , N,

_ 1 _ _ _

- Ril; + BT(Min + Myz®™ + Mgfxo) + DT(MN + NMN)(CQ% + Du; + Ga™) + Fag) =0.
354 This leads to

355 (4.9) i; = Y5 [(B" My + DT MyC)a; + (BT My + D" MyG)a™) + (B" MY, + DT My F)o),
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where My EN + %MN and Yy 2 R+ DT MyD. Denote A 2 A?V + %/_\N. Applying It6’s formula to pg,
we obtain

(4.10) dpo = — [(Ao + BoPo)T (A% xo + Ana™) + FT((M + My)z™ + M)
N
+(Co+ DoPy)"qf + F"q™) —TTQ((I = T)a™ —Tyao)]dt + > ghd W,
j=0

which together with (4.3) implies

a8 = A% (Como + Do(Powo + Pz ™)),
(4.11) T 5. (N
@ = A (Cozo + Do(Poxo + Pe™)), j > 0.

Applying (4.8), (4.9) and (4.11) into (4.7), we obtain (4.5). Applying (4.8), (4.9) and (4.11) into (4.10), we
have (4.6). Based on Theorem 4.1 and the above discussion, the proposition follows. |
Remark 4.4. Note that the social problem (P3) is essentially an optimal control problem. The feedback
solution to Problem (P3) is equivalent to the feedback representation of its open-loop solution.
We now introduce the following set of equations:

M+ ATM +MTA+CT"MC +Q — (B"M + DT MCO)"r !
x (B"M + D" MC) =0, M(T) = H,
M+ (A+G)TM+ M(A+G)+G"M + MG + C"MG + GTM(C + G)
— (BT™M + DTMC) Y Y (BTM + DT MG) + PTDIA°DoP + PTBTA
— (BM + D" MG)" Y (B"M + D" MC) — Qr + M°B,P
— (BM + DTMG)" Y~ (BTM + D"MG) =0, M(T) = —Hy,
MO+ (A+ G)TM° + M°(Ag + BoPy) + (M + M)F + PTBLA°
(412) — [BT(M + M)+ D" M(C + &))" Y Y(B"M° + DTMF) + (C+G)"MF
+ PTDIA(Co + DoPy)) 4+ (T — NTQT, =0, M°(T) = (I — )THT,
A%+ A%(Ag + By Py) + (Ag + BoPy)TA® + (Co + Do Py)TA°(Cy + Do Py)
— (BTAT + D"MEY'Y Y (B*M° + D" MF) + AF + F*M° + FTMF
+1TQr, =0, A%T) =TTHT,,
A+A(A+G)+ (A + BoPy)"A + FT(M + M) + A°By P
— (B"AT + D"ME)TY BT (M + M)+ DT M(C + G)| + F'M(C + G)
+1TQr-1 =0, AT)=TTHT - 1),

where T 2 R+ DT M D. From observation, we find that M, M, A® are symmetric and M° = AT For further
analysis, we assume

(A5) (4.12) admits a solution (M, M, M°, A A).

Remark 4.5. If (A5) holds, then by the continuous dependence of solutions on the parameter (see e.g.
[28, Theorem 3.5] or [27, Theorem 4]), we obtain that for sufficiently large N, (4.5) and (4.6) admit solutions,
respectively.

After applying the strategies of followers (4.9), we have

(4.13) dr; =[(A— BYN'Un)z; + (G — BY U n)z™) + (F — BY S 0Y)xo]dt
+ [(C = DY U N)z; + (G — DY R U n)x™) + (F — DY MUY w0 | dW;,
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where Uy 2 BT My + DTMyC, Uy = BT My + DT MyG, and U, = BT MY + DT My F. This leads to
dae™) =[(A+ G — BYF (Un + Tn)) 2™ 4 (F — BY O )] dt
+ % f: [(C— DY UN)z; + (G — DY Un)z™) + (F — DY W) wo] dW;.

=1

N

For a sufficiently large N, by Remark 4.5 and the law of large numbers, (™) can be approximated by the

MF function &, which satisfies
(4.14) dz =[(A+G—BY (U +¥))z+ (F — BY "U°)z]dt,
with
@15) v 2 BTM +DTMC, ¥ 2 BTN + DT MG,
90 2 BT MO + DTMF.

Based on Proposition 4.3, one can construct the decentralized feedback strategies for followers:
(4.16) Gy = =T (W + U + UOa0).

4.2. Optimization for the Leader. After applying the strategies (4.16) of followers, we have the
optimal control problem for the leader.
(P4): minimize Jo(ug, @(ug)) over ug € UY, where

T
Jo(uo, @(ug)) = E/o [|lwo — FO*%(N)FQO + |uol%, | dt + E[|zo(T) — Foff(N)(T)ﬁJO]a

drg = (Ao.’L'() + BQUO)dt + (Col‘o + DoUo)dWQ, xo(O) =&,
di; = [(A— BY'W)i; + Gi™N) — BY 710z + (F — BY 0%z dt
+ [(C = DY), + G — DYz + (F — DY %) z0]dW;, 3:(0) = &
Since {W;(t)} and {x;(0)} are independent sequences, for a sufficiently large N, it is plausible to replace
#(N) by z, which evolves from (4.14). In view of (4.1), suppose that the decentralized feedback solution for
the leader has the following form ug(t) = Py(t)xo + P(t)Z, 0 < t < T. Then, we have the following optimal

control problem for the leader. -
(P4'): minimize Jo(Py, P) over Py, P € C(0,T;R™*™), where

T
Jo(Po, P) = E/ [|z0 — ToZ|3), + |Powo + PE|%, |dt + E[|xo(T) — Loz(T) |7, ],
0

dxrg = [(AO + Bopo)il'o + Bop{f] dt + [(Co + D()Po)xo + Dopi’] dWy, 1’0(0) =&,
dz = [(A+ G —BY NV + W)z + (F — BY '0%)z]dt, z(0) =&

Let Xo = E[zozl], X = E[zz7] and Y = E[Zz{]. Then, by 1t6’s formula [60], we obtain

(4.17) % =(Ag + BoPp)Xo + Xo(Ao + BoPy)" + BoPY + YT (ByP)"
+ (Co + DoPy)Xo(Co + Do Po)™ + (Co + DoPy) YT (Do P)T
+ DoPY (Cy + DoPy)T + DyPX (DyP)T,
(4.18) % =(A+G—-BY NV + U)X +X(A+G-BY (¥ +¥)"
+(F - BY ")YT +v(F - BY 1997,
% =(A+G - BY 1T+ W)Y + (F - BY ¥4 X,

(4.19) +Y (Ao + BoPo)" + X(BoP)T.
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108 Meanwhile, the cost function of the leader can be rewritten as

T
109 jo(Po, P) :/ tT(QoXQ — Q()F()Y — FngYT + Fngrox
0
410 + P RoPyXo + PTRoPY™ + P RyPY + PRy PX)dt
111 + tr[HoXo(T) — Hol'oY (T) — I3 HoY™(T) + I HoL'o X (T)].

112 Denote Ag 2 Ay + BoPy, Co 2 Co + DoPy, F 2 F—BY10° A2 A+ G — BY"Y(U + ). Define the
113  Hamiltonian function of the leader as follow:

414 H(Py, P,01,0,,03)

115 —tr (QOXO — QoloY —TTQoYT + TTQolo X + PTRyPyXo + PTRyPyYT

416 + PIRyPY + PTRyPX + [AoXo 4+ XoAL + BoPY + YT (ByP)" + Co XoCT

17 + CoYT(DyP)T + DoPYCL + DoPX (DoP)T)0T + [AX + X AT + FYT + YET|0F
418 + [AY + FXo + YAY + X(BoP)"]|0% + [AY + FXo + YA + X (ByP)"] Teg).

419 By the matrix maximum principle [4], we obtain the following adjoint equations:

=01 = 55— = Qo+ Py RoPy+ AgO1 + 0140 + C701Co + F10, + OF F,
0
. OH _ _ R _ _
420 (420) -0y = 87 = FgQFO + PTR()P + AT@2 + O3A +O3ByP + (@g},.B().P)T7
. OH _ _ . _ . R .
=03 = o = PTRoPy =T Qo+ (BoP) O] + O2F + (DoP)"01C + AT 03 + O340,

421 with the stationarity conditions

OH _ R _
122 (4.21) 0=55 = 2(RoPoXo + RoPY + B{©: X0 + DI'©,Co Xy + DE©1DoPY + BLOLY),
0
H _ A _ _
123 (4.22 0 o, RoPY' + RyPX + BIeYT + Dt oe,CoYT + DY©,DyPX + B0k X).
opP 0 0 0 0“3

424 Note that ©; and ©5 are symmetric matrices. From (4.21) and (4.22), we obtain

Py = —R;'(Bj©1 + D} ©:Cy),
125 (4.23) { 0 o (B ©1+ Dy ©:C0)

P=-1,'Bl6Y,
126 where Yo=Ry + DI'©1Dy. After applying this into (4.20), we have

0,4+ AT, + 0,40+ Ccle,Cy — (BIe, + DTe,Cy)Tr5 (BF e, + DFe,Cy)
+ FTO3 +OYF + Qo =0, ©,(T) = Hy,

107 (4.24) Oy 4+ ATO, + 024 — 03B, Y ' BTOY + TTQTy = 0, ©4(T) =TT Hyly,

O3+ ATO5+ 0340 — O3B, Y5 (BTO, + DI'O,Cy) + OFF +TL Qo =0,
05(T) = —I'T H,y.

428 Based on the above discussions, we may construct the following feedback strategies:

g =— Y ' [(Bf ©14 Dj©:1Co)x0 + By 03 1)),

129 (4.25 i
( ) {ﬁi:—T_l(\I/xi+\I/$+\I/0xo)7i:l,...’N’

430 where T satisfies (4.14), and ¥, ¥ and ¥° are given by (4.15).
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THEOREM 4.6. For Problem (PF), assume (A1) holds; (4.12) and (4.24) admit a set of solutions. Then,
the strategqy (4.25) is a feedback (e1,€a)-Stackelberg equilibrium, where €1 = €3 = O(\/l—ﬁ) Furthermore,

assume that &,1 = 1,--- , N have the same variance. Then, the asymptotic average social cost of followers
s given by

im = Juoe (i, ) = E[& 12,000 + & 0 + 26TA(0)E + 1€0[2 0]

N Usocits 0) = 11 M(0) M(0) 0 v 0lAo(0))>
and

lim Jo (@, 1) = E[£] ©1(0)& + £ 02(0)€ + £705(0)&0).

N—o00

Proof. See Appendix C. O

5. Simulation. In this section, we give a numerical example to compare the performances of the open-

loop and feedback solutions. The simulation parameters are listed in Table 1.
TABLE 1
Simulation parameters

Ay By Co Dy Tg Qo Ry Ty Hp
-10 1 —-05 05 1 1 1 1 2

A B G F C DG F TTI; QR RITI, H
-2 1 1 1 -02020202 1 1 1 11 1 2

Consider a multi-agent system with 1 leader and 100 followers. The initial distributions of states for the
leader and followers satisfy normal distributions N(10,2) and N(5, 1), respectively. The decentralized open-
loop control (3.29) is given by solving (3.8), (3.9), (3.13) and (3.28). The solution to the Riccati equation
(3.28) is shown in Fig. 1. The decentralized feedback strategy (4.25) is obtained by solving (4.12) and (4.24).
The solutions to (4.12) and (4.24) are shown in Fig. 2. Fig. 3 gives the curves of followers’ state averages and
MF effects under open-loop and feedback solutions. Fig. 4 shows the state trajectories of the leader under
the two solutions. It can be seen that state averages approximate MF effects well under both solutions, and
the state average under open-loop control is larger than the one under feedback control.

F1G. 2. The solutions to (4.12) and (4.24).
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Ao(To)

100 I I I I I I I I I
0

F1c. 4. States of the leader under open-loop and feedback controls.

6. Concluding Remarks. This paper studies open-loop and feedback solutions of MF-LQG Stackel-
berg games with multiplicative noise. By decoupling MF FBSDEs and applying MF approximations, we
obtain a set of open-loop controls of players and a set of decentralized feedback strategies, respectively.
Furthermore, the corresponding optimal costs of all players are explicitly given in terms of the solutions to
two Riccati equations, respectively. A challenge is computing the system of Riccati equations for feedback
strategies. A possible approach is resorting to reinforcement learning even if dynamics are partially unknown.

Appendix A. Proof of Theorem 3.8.
To prove Theorem 3.8, we provide two lemmas.
LEMMA A.1. Assume that (A1)-(A4) hold. Then, the following holds:

(A1) sup E[|z™) — 2 4 [pN) — Exo[pi]]* + 1) — Exo[@]*] = O(3),
0<t<T N

where (V) = ~ Zz 1 Di and gN) = ~ Zz N
Proof. After applying v}, i =0,--- , N, we have

(A.2) dz; =(Az; + Gz — BY'B ¢ + Fpa})dt
+ [Cz; + (G — DY (BTK + D" PG))z — DY'By + Fpa§|dW;.

By (A4), E [ |u|?dt < ¢1. Then, it leads to E [ [z5[2dt < co. By (3.13), maxo<s<r E[|Z(t)[?] < 3. This
further gives that supy<,<7 E[|Z;(t)]|?] < 4. By (A.2) and (3.13), we obtain

d(z (N) _ Az (N) _ T)dt

z) =
1 N
+ % Z Cz; + (G — DYYBTK + DTPG))z — DY By + Fpaf|dW;,
which gives

#(t) — z(t) = 2(¢,0)[z(0) — 2(0)]

N
+ % Z/ ®(t,s)[C7; + (G — DY(BTK + D" PG))z — DY'Byp + Fpa§]dWi(s).
; 0
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Here, ®(t, s) satisfies d(b(t ) = A®(t,s), ®(s,s) = I. By (A1), we further have
(A:3) E|z™ () - z(t)?
2 1 [t 2
—(N — (0 [2 — 12 122 2 %2
<|@(t,0)|"E[z™(0) — 2(0)* + N?Z;/O cr|(t;s)|” max E(jz.] + 2] + ¢l + |5 ) ds
1=

1
{|<I> (t,0) | max, [E|zi0]? + 2 sup ]E(|xl|2+|:c\2+|<p|2+|x0| )]} O(N)

Note that p; = Pz; + KT + . Then, we have

sup E[lp™ () - Ex[pi(0]] = oileTEUH 2N () - z(1)[°] = O(1/N).

From (3.6), (3.7) and (A.3), we obtain

sup E[|g™ (1) —Exo[gi()]* = sup E[|[PCE™N(t) - z(1)’] = O(1/N).

0<t<T 0<t<T
d
LEMMA A.2. Assume that (A1)-(A4) hold. Then, the following holds:
1
sup Elal™ (1) — 2(1)* = O().
0<t<T
(A.4) 1
sup Elzj(t) — z;(t)|* = O(5);
0<t<T
where 7,1 =1,--- , N is the realized state under the control u;,1=1,--- ,N.

Proof. By (3.15) and (3.2), it can be verified that maxlSiSN]EfoTﬂxﬂQ + |uf|?)dt < c3. From (3.13), we have
N
d(a:iN) —I)= (/_X—FG)(x —x )dt + Z (Cx} + Duj + Gzl —I—Fxo)dW

Similar to (A.3), we have
(A.5) Elz™) — z|2 = O(1/N).
From (3.15) and (A.2),
d(z} — ;) = [A(e} — 5) + G™) — 2)dt + [C(aF — 7) + G — z)]aw;,
with 27(0) — Z;(0) = 0. Let ®;(¢) be the solution to the following SDE:
dD;(t) = AD;(t)dt + CD;(t)dWi(t), ®;(0) = I.

Then, one can obtain

ot — 3= /0 ®;(1)®! ()G (s) — z(s))ds + /0 ®;(1)®! ()G (s) — 2(5))dW; ().
Note that EfOT |®T (t)®;(t)|dt < c. From (A.5), we have

Elz} — 72 gma/o |0 (1)@] (5)°|G (2 (5) — 2 (s))|*ds

+28 [ [008](0) |6V (s) — a0 as = 0().

This completes the proof. O
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Proof of Theorem 3.8. (For followers). We first prove that for u € U,, Jsoe(u) < oo implies that
EIOT(|:U1'|2 + |u;|?)dt < oo, for all i = 1,--- , N. In views of (A2), by [43] we have

N T
0o ZE/ lug|?dt — co < Jooe(u) < 00,
i=1 70
488 which implies Zf\il EfOT |u;|?dt < ¢1. By (2.1) and Schwarz’s inequality [60],

489 E|z;(t)]* < CQE/ |2 (7)|2dr + 3

190 Z |2 (T)|2dT + c3.

491 By Gronwall’s inequality, we have Zjvzl E|z;(t)]? < Nege®t < Nege?™.

492 Let &; = x; — 2}, @ = u; — u} and 2V = & Ziil Z;. Then, by (2.1) and (3.15), we get
195 (A.6) di; =(Az; + Gi™N) + Bay)dt 4+ (Cz; + GE™N) + Daiy)dWi, 2;(0) = 0.
194 From (3.1), we have Js%\é)(uo, u) =« ZZ V(T3 (ug, u*) 4 Ji(ug, @) + i), where
T
495 Ji(ug, @) 2 IE/ [[Z: = T2W™N) —T1d0 3 + |3 dt
0
496 +E|&(T) — TaN(T) — T130(T) %,
T
197 T, = 2E / (27 = Ta™ —Tyag) T Q& — T&™) — 1) + al Lug + aF Ru?)dt
0
498 +E[(2(T) = D™ (T) = Ty23(T)) T H (2/(T) — T3N(T) = D10 (T))].
y (A.6) and Itd’s formula,

N N

Y E[E(T)(HZ(T) = Hpa(T) — Hp, 23(T))] = Y E[&] (1)pi(1))]

=1 =1

T
= ZE/ { T1AT D + GTExo[pi] + CT @ + GTExo (3] + Q% — QrEro[z]
— 0
+ (0 = DTQIay] + [Az; + Gi™N) + B, ) 'p; + [Ca; + Ga™) + Dﬂi]quf}dt
_E/ Z -zl Qa:Z Qrz+ (T -1) QFle] — ! Ru} }dt

+ZE/ TG" (N — Exo[p])dt + G (qN) — Exo[gl])] dt.

499  From this and direct computations, one can obtain

1 1 N T ~T * _ = T (= =
N TN ;QE{/O # [Qf 7)) + Qr@@™ —2) + 6T (W) ~Exo[p)
+ G (@)~ Epolg]dt + & (T) (H(@}(T) = #:(T)) = He(@!™ (1) = #(T))] |
- c Y L 2,12 4 2 2 _ 12
500 <y [Bf wla] [ [ G- n b a0 B )
1/2
+ 1™~ Emfa )]+ 0()
<O(—=) =«
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501 Note that by (A2), Zil Ji(@,ug) > 0. Then, we have Jooe(u*, u) < Jooe(u, , u) + €1.

502 (For the leader). By (3.16) and Schwarz’s inequality, we have
T N
503 (A7) Jo(uh, u*) :E/ (|75 — Toz + To(a™ — D)3, + [ug|%,]dt
0
504 +E[|z5(T) — Toz(T) + To (2™ (T) — (1)) 3, ) dt
T
505 <Jo(ul, u*) +/ [2(E|zf — Toz? - E|QoTo(x™ — 2)[2)"/?
0
506 +E[To (™) — 2)[2, ] dt + E[|To(a™(T) — 2(T)) 1%, ]
507 + 2(E|z(T) — Toz(T)|? - E|HoLo (2 (T) — 2(T))[2) "/
508 <Jo(uj,u*) + O(1/V'N).

509 It follows from Theorem 3.5 that Jo(ug, u*) < Jo(ug,u*). This together with (A.7) implies
510 (A.8) Jo(ug, u*(uh)) < Jo(uo, u(ug)) + O(1/VN),

511 for any ug € Up. From (3.16), we obtain

T
512 Jo(ug, u) :IE/ [lzo — Toat™ + To(al™) — 2)[3, + [uol%, ) dt
0
513 +E[o(T) = Toat™(T) + To(a™(T) = 2(T)) 3, ] dt
514 <Jo(up,u) + O(1/VN),
515 which with (A.8) gives Jo(uf, u*(uf)) < Jo(uo, u(ug)) + €2, where 3 = O(1/v/'N). O
516 Appendix B. Proof of Theorem 3.9. To prove Theorem 3.9, we first give a lemma. Consider an

517  MF-type problem: optimize the cost functional
T A A
515 (B.1) i (u;) :E/ (1Z; — TExo[2;] — T1zolg + |usl &) dt + E[|2(T) — TExo[2;(T)] — T1ao(T)|%]
0

519 subject to (7;(0) = &)

520 (B.2) dz; =(A%; + Bu; + GEzo[Z;] + Fxg)dt + (Cx; + Du; + GEro[Z;] + Fag)dW;.

521 LEMMA B.1. Assume (A1) and (A4) hold. For Problem (B.1)-(B.2), the optimal control uy is given by
522 (8.7), and the corresponding optimal cost is E[\fiﬁg(o) + \§o|§((0) + 2T (0)Zg] + s7-

523 Proof. Note that Exo[Z;] = T satisfies

524 (B.3) dz =[(A+ G)z + B+ Fux)dt,

525 where 4 = Exo[t;]. By a similar proof to [59], [49], we obtain

526 Ji(ui) =E[|zio — Zo| B0y + g (P(0) + K(0))Zo + 20" (0)Zo] + s
T
527 +IE/ [lu; —a+Y(B"P+ D"PC)(z; — 7)|%
0
528 +|a+ YN(BT(P+ K)+ D"P(C + &)z + B'¢ + D" PFao|3]dt
529 >E[l&i[B0) + €0l % o) + 297 (0)0] + s
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531 Proof of Theorem 3.9. Applying the control (3.29) into the social cost, it follows that

1 T - - . - Ny - * =
534 :N ;E{ /0 HJCZ —I'z —ThZo+a; —Z; — F(mg ) zZ) —Ty(zf — 360)|2Q
535 +|YY(BTP + DT PC)z; + (B'K + D" PG)z + BT + DT PFz,) |3, dt
536 +124(T) = T&(T) — T120(T) + 23(T) — :(T) — T(@™(T) — 2(T)) = Ty (23(T) — EO(T))ﬁI}.

537 By Lemma A.2 and Schwarz’s inequality, one can obtain

N
538 | 7800 Z%(Uf)
=1
- lN T*fz (N) =2 N CN - 2)\1/2
530 NX_;IE/O [l — Zl2 + [(z —x)|Q+|r1(xo—xo)\Q}dHN;Oz%(Em—xi|Q)
C g ™ _ )2 Y . a2
54( +N;0;£ (E|D (2 ﬁ;o?ﬁ% E|Ty (x5 — Zo)lg)
1
541 SO(W).

542 This together with Lemma B.1 leads to (3.30).
(For the leader) By a similar argument with the proof of Theorem 3.5, one can obtain

T
Jo(ug, u*) = E{&)Tyo(o) +&E7g(0) + /0 [(Roug + Bj yo + B9, ué>]dt}-

543 By (3.27), we have limy_,o0 Jo(uf, u*) = E[8yo(0) + £75(0)]. Thus, the theorem follows. O

544 Appendix C. Proofs of Theorems 4.1 and 4.6.
Proof of Theorem 4.1. Suppose that {@;,5 = 1,--- , N} is an optimal control of Problem (P3). Denote
by Z; the state of player 7 under the optimal control ;. For any u; € L%(0,T;R") and A € R (A # 0), let

uf‘ =1u; + A\u;, i =1,--- , N. Denote by xo,x the solution to the following perturbed equation:
dx 6\ [AQ.Z‘O + Bo(PoxO + Pl‘ )] dt + [CQJJO + DO(PO.TO + P.Z‘ )]dWQ,
dz} =(Az} + B(t; + M) + Gac)\ N4 Fxd)dt + (Cx} + Du} + GJ; )+ Fxd)dW;,
é() 507 ﬂfi()zgi,Z:l,Q,"',N,
545  with xE\N) =+ Zfil x}. Let z; = (z — #;)/\. It can be verified that z; satisfies
dZO = [(Ao + BoPo)Zo + BopZ(N)]dt + [(Co + Dopo)Zo + DopZ(N)]dWO, 20(0) = O,
546 _ _
dz; =[Az; + Bu; + GV 4+ Fzoldt + [Cz; + Du; + GzN) 4 Fzo]dW;, z(0) =0,
547 where i =1,2,--- N, and 2™ = L Zi\; z;. From (4.2), we have

515 (C.1) T (i + M) — T8 (i) = 2011 + A1,

S0cC SOC
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where

N T
1 y y
(C2) L=+ ZE/ (77 Qz — (2T Qrz™) — 28 Qr, TT2™) — ()T Qr, 2
i=1 v0

N
FTTQT 20 + i Ru;)dt + > E[#] (T)Hzy(T) — (3N(T))" HezN(T)
=1
— 2§ (T HE 2NN(T) = [# (1)) " Hy, 20(T) + &6 (T)T] HT12(T)],

N T
1
(C.3) Iy =+ ZE/ [[zi13 — |23, — 2028 QF 2™ + 2 TT QT 20 + |us|%) dt
i=1 0

N
+ B[z — 12N (D), — 220(T) T HE 2 (T) + 20(T) g e, ]
i=1
Let {ﬁi,(jf,i,j =0,1,---, N} be a set of solutions to (4.3). Then, by It&’s formula, we obtain

Z E[(ITH( — Dz™N(T) + TT HD i (1), 20(T)))
), 20(T)) — (P0(0), 20(0))]

=1
N
= Z / (Ao + BoPo)"po + F''p 5N 1 (Co + Do Po)T gy + FTg™)

_ F’{Q((I — F);L'(N) — FlﬂufO)} 3 ZO> + <ﬁ0, (AO + BOPO)ZO + BOPZ(N)>
+(d@, (Co + DoPo)zo + DOPZ(N)>}dt

- ZE / (= 1F5™ + Fg™ —TTQ(UI ~ D)™ — Do), o)

+ (PTBTpy + PTDI 0, zl>}dt,

and

N
ZEKH@(T) — Hpg™(T) + (D — )THD #0(T), 2(T))]

fZIE/{ [Q#; — Qra™) + (I = 1)'QT1# + PTBL po + PTDY ], 2:)

F(FPN 4 Fg™) 20) + (BTp; + DTG, u;) }dt,

where the second equation holds since Zf\; E(GTpN), 2) = Ef\il E(p;, Gz™M)) and vazl E(GTGN), 2;) =
SN (G, Gz, From the above equations and (C.2),

N T
1 . y . y .
h :N ZE/ [<Q1‘z’ - QFJS(N) +(I' = I)TQFJUO, Zz> + <F1TQ(F - I)x(N) + F1TQF1330, 20)
. 0

N
+ (Ritg, uy)|dt + Y E[(HZ(T) — Hpa™"(T) + (I — I)T Hlao(T), (7))
i=1
DENN(T) + TTHT 1 (T), 20(T)))

+ (ITH(T -
N
(C.4) Z / (Rii; + BTp; + DT @, w;))dt.

2\~
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Note that Q — Qr = (I —T)TQ(I —T) and H — Hy = (I —T)TH(I —T'). Then, we have
1L T
=¥ Z]E/O [lzi = 2™[g + 12N 3 g, + 2(T20) QT — 12N + [Tyzolg) + Jusl%] dt
N A
+ D E[|z(T) = 2T 3 + 2T G, — 225 (TVHE 20(T) + [Tr20(T)|3]
1oL [T
=% Z]E/O [J2i = 2N % + |(I = T)2®) = Tizofd + il %) dt
i=1

N
+ ZE[Izi(T) — 2T+ (1 = D)2NN(T) = Trzo(T)F].

574 Since @ > 0, R > 0, and H > 0, we obtain Iy > 0. From (C.1), @ is a minimizer to (P1) if and only if I; = 0,
75  which is equivalent to Rii; + BTp; + DT¢ = 0, i = 1,---, N. Thus, we have the optimality system (4.3).
76 This implies that (4.3) admits a solution (&;, p;, q{, i,j=1,---,N). O
Proof of Theorem 4.6. (For followers). By (2.6), it can be verified that under feedback strategies (2.5),
IEfOT(|x0\2 + |Z|?)dt < c. This further gives EfOT(|xi|2 + M) [2)dt < ¢;. Besides, from (2.6), we have

d(z™) —7) =(A+ G + BK) (™) — z)dt

N
Z [(C + DK)z; + Ga™) + DKZ + (F + DKg)xo)dW;,

577  Similar to (A.3), we have for any ¢ € [0, 7],

578 Bl (t) — z(t)[* < |®(t,0)|*Elz™)(0) — 2(0)[?

1 N t 1
= e - 5 2 (N)|12 1 =2 2 Y
570 (C.5) + 7 Eﬁ /0 c|®(t, s)|1r§niz%>§VIE(|xz| + 2 + |2 + || ds = O(5;),

580 where ®(t,s) satisfies dé{gi’s) = (A+ G + BK)®(t,s), ®(s,s) = I. Note that z = E[z;|F°] = E[z(N)|FO]
581 (which follows from (2.6)). Then, we have

582 (C.6) Elz"(z(N) — 7)) = E[z"E[+™) — 2| F°]] = 0

583 From (2.3) and (C.5), we have

581 (C.7) T (ug, u) =

sSocC

T
IE/O [|2:l3 — 1e™ By, — 225 QF &™) + |Trao[d + |wil %] dt

2=
e

=1

v S E[la(T)f — (2D, ~ 2(H,0(D)7a(T) + [Cyzo(T) ]

<

585 +

=|

N T
1

586 SN ZE/ U%\ZQ - |9_U|ggF - 2a§ Q Tt |F1$0|Q + |uz|R]

i=1 70

X
587 t5 Y E[lzi(D)E — [2(D), — 2(H, 20(1)T2(T) + [Przo(D)[E] + e

i=1

588 Jgoc (ug,u) + €1.

580 We now deform js(é\é)(uo, u) by the method of completing squares. Note that 7 = E[x;|F°] satisfies

590 (C.8) dz = [(A+ G)Z + Bu + Fuxoldt,
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where i = E[u;|F°]. Then, it follows that

d(z; — 7) =[A(z; — Z) + B(u; — @) + G(z™N) — &))dt + (Cx; + Du; + Gz™N) + Fag)dW;.

From (C.6), applying It6’s formula to |z; — Z|3,, we obtain

(C.9)

B [|i(T) = 2(T)[ — [24(0) = 2(0)[3so)]
=E /T {(331‘ — )T (M + ATM + MA+ CTMC)(z; — Z) + (u; — w)" DT MD(u; — @)
0

+2(u; —u)"(B*M + DT MC)(x; — 7) + a" DT M D + 2 F* M Fxq
+zZ7(C + G M[(C + G)T 4 2Fx0] + 20 DT M[(C + G)Z + Fxo)
+2(z™ —DT(GTMC + GTM)(2; — &) + GTMD(u; — a)]}dt.

It follows by (C.8) that

(C.10)

E[z"(T)(H — Hp)z(T) — 2" (0)(M(0) + M(0))z(0)]
T :
:]E/ {ZT[M + M+ (A+G)T(M + M)+ (M + M)(A+G)z
0

+ 23" (M + M)Bu + 22" (M + M)Fx }dt.

By (2.6) and It6’s formula,

(C.11)

E[«f (T)ITHT 1 20(T) — 23 (0)A°(0)20(0)]
T
:E/ {2 TA® + (Ao + BoPo)"A° + A°(Ag + BoPo) + (Co + DoPo)"A°(Co + Do Py)]xo
0

+ 228 [A°ByP + (Co + Do Py)"A° Dy Pz + 22" P D§ A° Dy Pz }dt.

Applying Ito’s formula to ' Az and 27 Mz, we have

(C.12)

and

(C.13)

E[ - af (T)H{ #(T) - x5 (0)A(0)z(0)]

T . B B B B B
:E/ {2{ A+ AA+ G) + (Ag + BoPo)" Az + o A(Bu + Fxo) + 2" PT By Az }dt,
0

E[ — z"(T)Hp. xo(T) — 27 (0) M°(0)20(0)]

T
:]E/ {z7 M + (A+ G)"M° + M°(Ag + BoPy)|7 + (B + Fuo)" M o + 37 M° By Pz } dt.
0

23
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611  From (4.12), (C.9)-(C.13), one can obtain

612 T (ug, u)
613 — Z]E/ [lz: — 213 + |25 _op + 2[T = )T QT120)" @ + [T1wolg) + |us — ulf, + |u|%] dt
i=1
1 N
614 t El|zi(T) — 2(T) |} + |2(T)|f—p, + 2[(C = DT HT12o(T)T2(T) + [Tr2o(T) 3]
=1
1 & _
615 =~ D E[l2i(0) = 2(0) 3110y + 12(0)[ 3404 570 + 220 (0)A(0)™ (0) + |20(0) [}, o]
i=1
1L [T
616 i Z]E/ {(mi — )T (z; — 2) 4 (us — 0) T (u; — @) + 2(u; — @) 70 (z; — Z)
i=1 70
617 +alYa+ 27 (0 + T YW + U)z + 2aT (U + U)Z + $Oxg) + (9020)T T~ 1 00,
618 + 227 (0 + W)TY 1000 4+ 2™ — BT [(GTMC + GT M) (z; — 7) + GTMD(u; — a)]}dt
619 =N Z]E €ilaeo) + |£‘M(O + 265 M0)&: + 1€0l% 0y
620 + %ZE/ {\ui — a4+ Y (z; — 2)|% 4 a+ TP+ 0)z + UOa)|5
i=1 0
621 +2(a™ — )TIGTMC + GTM)(w; — ) + GTMD(u; — a)]}dt
N —_ —
622 Z [1€:13000) + |§\?\z(o) + 265 M0)&: + [€0lX 0]
1 on /7 . .
623 SR / 2(2™) — H)T((GTMC + GT M) (s — &) + GTMD(u; — a)]dt.
— 0

621 Note that @; = —Y~1(z; + UZ + ¥Ox). From (C.5) and (C.7), we have JO (i, a) < JE (fig,u) + €1,
625 where ¢ = O(1/V/N).

626 (For the leader). From (2.2), we have
T
w21 (C.14) Jo(iio, (i) <Jolitn, i(it0)) +E / [2(j70 (1) = oz () 2IQoTo (2™ (1) — 2(1))[2) /*
0
628 + IDo@™ () = ()1, |t + [Fo(@™)(T) - 2(T))I, |
62 +2E [(|xO(T) — Pz (T)[?| Holo(2™)(T) — (T))?)*
630 <Jo(tio, u(ti)) + O(1/V'N).
631 By Itd’s formula, one can obtain
632 (C.15)  E[zl (T)Howo(T)] — E[zd (0)01(0)20(0)]
T
633 :E/ (23 (01 + ATO1 + 0140 + CF ©1Co)x + 2ul (BEO1 + DEO1Cy) o] dt
0
T
634 E[z7(T)TT Holoz(T)] — E[z7(0)02(0)Z(0)] = E / [27(©5 + ATO, + 0 A)z + 228 FT©,7]dt
0
635 and
636 (C.16) E[z7(T) (-1 Hy)zo(T)] — E[27(0)03(0)20(0)]
T
637 ZE/ [fT(@g + ATGS + O340)zo + £T93B0u0 + ngT@3$0] dt
0
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638 It follows from (C.15)-(C.16) that

630 (C.17) Jo(ug, u(ug)) =E[zd (0)01(0)20(0) + 27 (0)02(0)Z(0) + 27 (0)©3(0)2¢(0)]

640 + E/T {xg(Bg@l + D¥e,Co)T="Y(BYe, + DTOe,Ch)xo

641 + ET((j)gBOE_lB(:)F@ggE +23703B,= 1 (BE©1 + DEFO,Co)xo

642 +2ul [(BTO; + DT©1Cy)x0 + BT O3] + uOTEuO] dt

643 =E[£] ©1(0)&0 + £ O2(0)€ + £7O3(0)&0] + ]E/OT D“o

644 +E2 (BT + DFO,Co)zo + E*lBoT@gng dt

645 >E[&) 01(0)&0 + ETO2(0)¢ + £703(0)&0] = Jo (@, @lao)).

6146 This together with (C.14) leads to Jo(io, (1)) < Jo(uo,u(ug)) + O(1/+/N). The reminder of the proof is
647 similar to that of Theorem 3.8. 0
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