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and feedback solutions, the corresponding optimal costs of all players are explicitly given in terms of the solutions to two Riccati10
equations, respectively.11

Key words. Stackelberg game, mean field team, social control, forward-backward stochastic differential equation12

MSC codes. 49N80, 91A16, 93E03, 93E2013

1. Introduction.14

1.1. Background and Motivation. Mean field (MF) games have drawn much attention from various15

disciplines including control theory, applied mathematics and economics [30], [10], [12], [16]. In an MF16

game, the impact of each individual is negligible while the effect of the population is significant. The main17

methodology of MF games is to replace the interactions among agents by population aggregation effect,18

which structurally models the MF interactions in large population systems. Thus, the high-dimensional19

multi-agent optimization problem can be transformed into a low-dimensional local optimal control problem20

for a representative agent [30], [12]. Wide applications have been found in many fields, such as economics21

[55], [48], smart grid [44], engineering [29] and social sciences [3], [14]. As a classical type of MF models, mean22

field linear quadratic Gaussian (MF-LQG) games are intensively studied due to their analytical tractability23

and close connection to practical applications. For works on such kind of problems, readers can refer to [6],24

[19], [24], [31], [45], [51], [54]. The pioneering work [23] studied ϵ-Nash equilibrium strategies for MF-LQG25

games with discounted costs based on the Nash certainty equivalence. This approach was then applied to the26

cases with long run average costs [31] and with Markov jump parameters [51], respectively. For MF games27

with major players, the works [22], [13] considered continuous-time LQG games with complete and partial28

information; [52] investigated discrete-time LQG games with random parameters; [11] and [41] focused on29

the nonlinear case.30

In contrast to the above models, the leader-follower (Stackelberg) game involves a leader-follower struc-31

ture. Consider a leader-follower game with two layers. One layer of players are defined as leaders with a32

dominant position and the other players is defined as followers with a subordinate position. The leader has33

the priority to give a strategy first and then followers seek strategies to minimize their costs with response to34

the strategies of leaders. According to followers’ optimal response, leaders will choose strategies to minimize35

their costs. Leader-follower games have been widely investigated in the literature (see e.g. [42], [58], [7], [56],36

[20]). Recently, leader-follower MF games have attracted great research interest [9], [53], [34], [5], [57]. The37

work [9] considered MF Stackelberg games with delayed instructions. [53] studied discrete-time hierarchical38

MF games with tracking-type costs and gave the ε-Stackelberg equilibrium. Authors in [34] investigated39

continuous-time MF-LQG Stackelberg games by the fixed-point method, and they asserted that “complexity40

brought by coupling among leader and followers makes the use of direct approach almost impossible”. This41

work is further generalized to the jump diffusion model [33]. Besides, [57] investigated feedback strategies of42

MF Stackelberg games by solving the master equations.43
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Different from noncooperative games, social optimization is a joint decision problem where all players44

work cooperatively to optimize the social cost. This is a typical class of team decision problem [18]. Authors45

in [24] studied social optima in the MF-LQG control, and provided an asymptotic team-optimal solution,46

which is extended to the case of mixed games in [25]. The work [54] investigated the MF social optimal47

problem where the jump parameter appears as a common source of randomness. More investigation can48

be found in [2] for team-optimal control with finite population and partial information, [39] for dynamic49

collective choice by finding social optima, [40] for stochastic dynamic teams and their MF limit, [46], [21]50

for MF teams with uncertainty in drift and volatility, and [35] for social control applications in economics.51

Besides, see [47] for value-iteration learning in ergodic MF-LQG social control, and [26] for online policy52

iteration in MF Pareto optimal control.53

Normally, there are two routes to solve MF games and teams. One is called the fixed-point approach54

[23, 24, 10, 16], which starts by applying MF approximation and constructing a fixed-point equation. A set55

of decentralized strategies can be designed by tackling the fixed-point equation together with the optimal56

response of a representative player. In general, the fixed-point equation is difficult to solve. In addition, when57

solving the team problem by the fixed-point approach, an additional variable (called social impact [24, 54])58

needs to be introduced. This leads to a drastic increase of computational complexity for MF teams with59

multiplicative noise [38], [17]. Another route is called the direct approach [27, 30, 49], which takes a path60

from finite-population to infinite-population systems. By decoupling the Hamiltonian system for N -player,61

one can obtain a centralized strategy which explicitly relies on the state of a player and population state62

average. Applying MF approximations, the decentralized control can be constructed. By the direct approach,63

the resulting control is neat and less computation is required, particularly for team problems [49].64

1.2. Contribution and Novelty. This paper considers MF-LQG Stackelberg games with a leader and65

many followers, where the state and control weight matrices in their costs are allowed to not be positive66

definite. The leader first give his strategy and then all followers cooperate to optimize the social cost, the67

sum of individual costs. For instance, consider an example of macroeconomic regulation, where the regulator/68

government is the leader, and local authorities are followers [37]. The state of the leader appears in both69

dynamics and cost of each follower. It shows that the dynamics and costs of followers are directly influenced70

by the behavior of the leader. Different from [25] and [34], our model involves population state average x(N)71

in both drift and diffusion terms in followers’ dynamics. Owing to the presence of indefinite cost weights72

and multiplicative noise, the control design and analysis get more difficult. Convex analysis is needed for73

the leader-follower MF-LQG problem. In particular, the convex analysis for leader’s problem is challenging,74

since the system is driven by a set of coupled forward-backward stochastic differential equations (FBSDEs).75

By the terminology of [8], the solutions to Stackelberg games are mainly divided into open-loop, closed-76

loop and feedback (closed-loop memoryless) solutions. The Stackelberg solution under closed-loop information77

pattern cannot be solved by utilizing the standard techniques of optimal control theory (See [8, p. 376]).78

However, the feedback solution to Stackelberg LQG games with strictly convex cost can be determined in79

the closed form. Compared with the open-loop solution, there exists stronger coupling among the feedback80

strategies of the leader and numerous followers in MF games. Additionally, the MF coupling among players81

bring about more difficulty in strategy design. Until now, most previous works focused on open-loop solutions82

of MF leader-follower games, and only a few works were on feedback and closed-loop solutions. Furthermore,83

the relationship among different solutions is still unclear.84

In this paper, we study systematically open-loop and feedback solutions to MF leader-follower games85

by the direct approach. The open-loop solution starts with solving a centralized social control problem for86

followers, and obtaining a system of high-dimensional FBSDEs. By MF approximations, a set of open-loop87

controls of followers is designed in terms of an MF FBSDE. After applying followers’ strategies, we derive88

necessary and sufficient conditions for the solvability of the leader’s problem, and then obtain the feedback89

representation of the open-loop control by decoupling an FBSDE. From perturbation analysis, the proposed90

strategy is shown to be an (ε1, ε2)-Stackelberg equilibrium. Furthermore, we obtain the optimal costs of91

players in terms of the solutions to Riccati equations. Next, the feedback solution is investigated for MF92

Stackelberg games. Different from the open-loop solution, we presume that the leader has a strategy with the93

feedback form. With leader’s feedback gain fixed, we obtain the feedback strategies of followers by decoupling94

high-dimensional FBSDEs. Applying the matrix maximum principle with MF approximations, we solve the95

optimal control problem for the leader, and then construct a set of decentralized feedback strategies for all96

players. By the technique of completing the square, we show that the proposed decentralized strategy is a97

feedback (ε1, ε2)-Stackelberg equilibrium and give an explicit form of the corresponding costs of players.98
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The main contributions of the paper are listed as follows.99

• By adopting a direct approach, we explore the open-loop and feedback solutions to indefinite leader-100

follower MF games with multiplicative noise. Different from the fixed-point approach, no additional101

terms are introduced when MF social control problem is solved for followers.102

• By variational analysis with MF approximations, we obtain an open-loop asymptotic Stackelberg103

equilibrium in terms of MF FBSDEs, which can be implemented offline.104

• By decoupling high-dimensional FBSDEs and applying the matrix maximum principle, a set of105

decentralized feedback strategies is constructed. Different from traditional works, a cross term has106

appeared for deriving feedback strategies due to the presence of MF coupling.107

1.3. Organization and Notation. The paper is organized as follows. In Section 2, we formulate108

the problem of MF-LQG leader-follower games with multiplicative noise. In Section 3, we first obtain a109

set of open-loop control laws in terms of MF FBSDEs, and give its feedback representation by virtue of110

Riccati equations. In Section 4, we design the feedback strategies of MF Stakelberg games and provide the111

corresponding costs of all players. In Section 5, we give a numerical example to demonstrate the performance112

of different solutions. Section 6 concludes the paper.113

Notation: Throughout this paper, let (Ω,F , {Ft}0≤t≤T ,P) be a complete filtered probability space aug-114

mented by all P-null sets in F . | · | is the standard Euclidean norm and ⟨·, ·⟩ is the standard Euclidean115

inner product. For a vector z and a matrix Q, ∥z∥2Q = zTQz; Q > 0 (Q ≥ 0) means that the matrix116

Q is positive definite (positive semi-definite). Q† is the Moore-Penrose pseudoinverse1 of the matrix Q,117

R(Q) denotes the range of a matrix (or an operator) Q. Let C(0, T ;Rm×n) be the set of Rm×n-valued118

continuous function and L2
F (0, T ;Rm) be the set of all {F}t≥0-adapted Rm-valued processes x(·) such that119

∥x(t)∥2L2 =: E
∫ T

0
∥x(t)∥2dt < ∞. For a symmetric matrix S ≥ 0, the quadratic form xTSx is defined as120

∥x∥2S , where xT is the transpose of x.121

2. Problem Formulation. Consider a large-population system with a leader and N followers. The122

state processes of a leader and N followers satisfy the following stochastic differential equations:123

(2.1)


dx0(t)=[A0x0(t) +B0u0(t)]dt+ [C0x0(t) +D0u0(t)]dW0(t),

dxi(t) =[Axi(t) +Bui(t) +Gx(N)(t) + Fx0(t)]dt+ [Cxi(t) +Dui(t) + Ḡx(N)(t) + F̄ x0(t)]dWi(t),

x0(0)=ξ0, xi(0) = ξi, i = 1, 2, · · · , N,
124

125

where x0 ∈ Rn0 , u0 ∈ Rm0 are the state and input of the leader, and xi ∈ Rn, ui ∈ Rm are the state and126

input of the ith follower, i = 1, · · · , N , respectively. x(N)(t) ≜ 1
N

∑N
i=1 xi(t) is the state average of all127

the followers. {W0(·),W1(·), · · · ,WN (·)} are a sequence of independent d-dimensional standard Brownian128

motions defined on the space (Ω,F , {Ft}0≤t≤T ,P). Let Ft = σ(ξ0, ξi,W0(s),Wi(s), 0 ≤ s ≤ t, i = 1, · · · , N)).129

Denote F0
t = σ(ξ0,W0(s), 0 ≤ s ≤ t) and F i

t = σ(ξ0, ξi,W0(s),Wi(s), 0 ≤ s ≤ t) for i = 1, · · · , N . The130

admissible control set for the leader is defined as follows: U0 =
{
u0|u0(t) ∈ L2

F0
t
(0, T ;Rm)

}
. The admissible131

decentralized control set for all the followers is defined by132

Ud =
{
(u1, · · · , uN )|ui(t) ∈ L2

Fi
t
(0, T ;Rm), i = 1, · · · , N

}
.133

Also, the centralized control set for followers is given by134

Uc =
{
(u1, · · · , uN )|ui(t) ∈ L2

Ft
(0, T ;Rm), i = 1, · · · , N

}
.135

For the leader, the cost functional is defined by136

(2.2) J0(u0, u) =E
∫ T

0

[
|x0(t)− Γ0x

(N)(t)|2Q0
+ |u0(t)|2R0

]
dt+ E

[
|x0(T )− Γ̂0x

(N)(T )|2H0

]
,137

where Q0, R0 and H0 are symmetric matrices with proper dimensions, and u = (u1, · · · , uN ). For the ith138

follower, the cost functional is defined by139

(2.3) Ji(u0, u)=E
∫ T

0

[
|xi(t)− Γx(N)(t)− Γ1x0(t)|2Q + |ui(t)|2R

]
dt+ E

[
|xi(T )− Γ̂x(N)(T )− Γ̂1x0(T )|2H

]
,140

1Q† is a unique matrix satisfying QQ†Q = Q†, Q†QQ† = Q, (Q†Q)T = Q†Q, and (QQ†)T = QQ†. See [36] for more
properties of pseudoinverse.
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where Q, R and H are symmetric matrices with proper dimensions. All the followers cooperate to minimize141

their social cost functional, denoted by142

(2.4) J (N)
soc (u0, u) =

1

N

N∑
i=1

Ji(u0, u).143

Now we make the following assumption.144

(A1) {xi(0)} and Wi(t), i = 1, 2, · · · , N are independent of each other. Ex0(0) = ξ̄0 and Exi(0) = ξ̄,145

i = 1, · · · , N . There exists a constant c0 such that supi=1,2,··· ,N E|xi(0)|2 ≤ c0, where c0 is independent of146

N .147

We next discuss the decision hierarchy of the Stackelberg game. The leader holds a dominant position in148

the sense that it first announces its strategy u0, and enforces on followers. The N followers then respond by149

cooperatively optimizing their social cost (2.4) under the leader’s strategy. In this process, the leader takes150

into account of the rational reactions of followers.151

Due to accessible information restriction and high computational complexity, one generally is not able152

to attain centralized Stackelberg equilibria, but only achieve asymptotic Stackelberg equilibria under decen-153

tralized information patterns.154

We now introduce the definition of the open-loop (ϵ1, ϵ2)-Stackelberg equilibrium. From now on, the155

notation of time t may be suppressed if necessary.156

Definition 2.1. A set of control laws (u∗0, u
∗
1, · · · , u∗N ) is an open-loop (ϵ1, ϵ2)-Stackelberg equilibrium if157

the following hold:158

(i) When the leader announces a strategy u∗0(·) ∈ U0 over [0, T ], u∗ = (u∗1, · · · , u∗N ) attains an ϵ1-optimal
response, i.e.,

J (N)
soc (u∗0, u

∗) ≤ J (N)
soc (u∗0, u) + ϵ1, for any u ∈ Uc,

(ii) For any u0 ∈ U0, J0(u
∗
0, u

∗(u∗0)) ≤ J0(u0, u(u0)) + ϵ2, where u
∗ and u are ϵ1-optimal responses to159

strategies u∗0 and u0, respectively.160

Inspired by [8, 27, 49], we consider feedback strategies with the following form:161

(2.5)

{
u0 =P0x0 + P̄ x̄,

ui =K̂xi + K̄x̄+K0x0, i = 1, · · · , N
162

where P0, P̄ , K̂, K̄,K0 ∈ L2(0, T ;Rn×n); x0, xi and x̄ satisfy163

(2.6)



dx0 = [A0x0 +B0(P0x0 + P̄ x̄)]dt+ [C0x0 +D0(P0x0 + P̄ x̄)]dW0,

dxi = [Axi +B(K̂xi + K̄x̄+K0x0) +Gx(N) + Fx0]dt

+ [Cxi +D(K̂xi + K̄x̄+K0x0) + Ḡx(N) + F̄ x0]dWi,

dx̄ =
{
[A+G+B(K̂ + K̄)]x̄+ (F +BK0)x0

}
dt,

x0(0) = ξ0, xi(0) = ξi, i = 1, 2, · · · , N, x̄(0) = ξ̄.

164

In the above, x̄ = E[xi|F0
t ] is an approximation of x(N) for sufficiently large N .165

We now introduce the definition of the feedback (ϵ1, ϵ2)-Stackelberg equilibrium.166

Definition 2.2. A set of strategies (û0, û1, · · · , ûN ) is a feedback (ϵ1, ϵ2)-Stackelberg equilibrium if the167

following hold:168

(i) When the leader announces a strategy û0 = P0x0 + P̄ x̄ at time t, û = (û1, · · · , ûN ) attains an
ϵ1-optimal feedback response, i.e.,

J (N)
soc (û0, û) ≤ J (N)

soc (û0, u) + ϵ1, for any u ∈ Uc,

where both ûi and ui have the form K̂xi + K̄x̄+K0x0, i = 1, . . . N ;169

(ii) For any u0 ∈ U0, J0(û0(û0), û) ≤ J0(u0, u(u0)) + ϵ2, where u0 has the form P0x0 + P̄ x̄; û and u are170

ϵ1-optimal feedback responses to strategies û0 and u0, respectively.171

In this paper, we study open-loop and feedback solutions to Problem (2.1)-(2.4), respectively.172

(PO) Seek an open-loop (ϵ1, ϵ2)-Stackelberg equilibrium over decentralized control sets U0, Ud;173

(PF) Seek a feedback (ϵ1, ϵ2)-Stackelberg equilibrium in the form of (2.5).174
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3. Open-loop Solutions to Leader-Follower MF Games.175

3.1. The MF Social Control Problem for N Followers. Denote

QΓ
∆
= QΓ + ΓTQ− ΓTQΓ, HΓ̂

∆
= HΓ̂ + Γ̂TH − Γ̂THΓ̂,

QΓ1

∆
= (I − Γ)TQΓ1, HΓ̂1

∆
= (I − Γ̂)THΓ̂1.

Suppose u0 is fixed. We now consider the following social control problem for N followers.176

(P1): minimize Jsoc over u ∈ Uc, where177

J (N)
soc (u) =

1

N

N∑
i=1

E
∫ T

0

[∣∣xi − Γx(N) − Γ1x0
∣∣2
Q
+ |ui|2R

]
dt+

1

N

N∑
i=1

E
[
|xi(T )− Γ̂x(N)(T )− Γ̂1x0(T )|2H

]
178

By examining the social cost variation, we obtain the optimal control laws for N followers. The proof is179

similar to that of Theorem 3.1 in [49], and hence omitted here.180

Theorem 3.1. Problem (P1) admits an optimal control if and only if JN
soc is convex in u and the following181

system of FBSDEs admits a set of adapted solutions {xi, pi, qji , i, j = 1, · · · , N}:182

(3.1)



dxi = (Axi +Bǔi +Gx(N) + Fx0)dt+ (Cxi +Dǔi + Ḡx(N) + F̄ x0)dWi,

dpi = −
(
AT pi +GT p(N) + CT qii + ḠT q(N) +Qxi −QΓx

(N) −QΓ1x0
)
dt+

N∑
j=0

qji dWj ,

xi(0) = ξi, i = 1, · · · , N, pi(T ) = Hxi(T )−HΓ̂x
(N)(T )−HΓ̂1

x0(T ),

183

where p(N) = 1
N

∑N
j=1 pj, q

(N) = 1
N

∑N
j=1 q

j
j , and the optimal control laws of followers ǔi satisfy184

(3.2) Rǔi +BT pi +DT qii = 0, i = 1, · · · , N.185

The above theorem gives an equivalence between the solvability of Problem (P1) and that of an FBSDE186

under the convexity assumption. We refer to the backward equation in (3.2) as the adjoint equation of (1.1).187

Condition (3.2) can be regarded as the stationarity condition in Pontryagin’s maximum principle. Indeed,188

if J
(N)
soc is uniformly convex in u, then Problem (P1) admits an optimal control necessarily [60]. For further189

existence analysis, we assume190

(A2) J
(N)
soc is uniformly convex in u.191

Remark 3.2. The uniform convexity of J
(N)
soc in Problem (P1) can be verified by virtue of the solvability192

of Riccati equations (See e.g., [43], [49]). Particularly, if Q ≥ 0 and R > 0, then A2) holds.193

Denote EF0 [·] ∆
= E[·|F0

t ]. Letting N → ∞, by the MF methodology [23], [30], we can approximate x̌i, p̌i194

in (3.1) by x̄i, p̄i, i = 1, · · · , N , which satisfy195

(3.3)


dx̄i = (Ax̄i +Bu∗i +GEF0 [x̄i] + Fx0)dt+ (Cx̄i +Du∗i + ḠEF0 [x̄i] + F̄ x0)dWi,

dp̄i = −
(
AT p̄i +GTEF0 [p̄i] + CT q̄ii + ḠTEF0 [q̄ii ] +Qx̄i −QΓEF0 [x̄i]−QΓ1x0

)
dt

+ q̄iidWi + q̄0i dW0,

x̄i(0) = ξi, i = 1, · · · , N, p̄i(T ) = Hx̄i(T )−HΓ̂EF0 [x̄i(T )]−HΓ̂1
x0(T ),

196

with the decentralized control u∗i satisfying the stationarity condition197

(3.4) Ru∗i +BT p̄i +DT q̄ii = 0, i = 1, · · · , N.198

We now use the idea inspired by [32], [59], [50] to decouple the FBSDE (3.3). Let p̄i = Px̄i+KEF0 [x̄i]+199

φ, i = 1, · · · , N. Then, we have200

(3.5)

dp̄i = Ṗ x̄idt+ dφ+ P
[(
Ax̄i +Būi +GEF0 [x̄i] + Fx0

)
dt+ (Cx̄i +Dūi + ḠEF0 [x̄i] + F̄ x0)dWi

]
+ K̇EF0 [x̄i]dt+K

[
(A+G)EF0 [x̄i] +BEF0 [ūi] + Fx0

]
dt

= −
[
AT (Px̄i +KEF0 [x̄i] + φ) + CT [q̄ii ] +GT ((P +K)EF0 [x̄i] + φ) + ḠTEF0 [q̄ii ]

+Qx̄i −QΓEF0 [x̄i]−QΓ1
x0

]
dt+ q̄iidWi + q̄0i dW0,

201
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which implies202

(3.6) q̄ii = P (Cx̄i +Dūi + ḠEF0 [x̄i] + F̄ x0), i = 1, · · · , N.203

This together with (3.4) leads to204

Ru∗i +BT (Px̄i +KEF0 [x̄i] + φ) +DTP (Cx̄i +Dūi + ḠEF0 [x̄i] + F̄ x0) = 0.205

Let Υ
∆
= R+DTPD. If R(BT ) ∪R(DTP ) ⊆ R(Υ), then we have206

u∗i =−Υ†[(BTP +DTPC
)
x̄i +

(
BTK +DTPḠ

)
EF0 [x̄i] +BTφ+DTPF̄x0

]
.(3.7)207

This together with (3.5) gives208

Ṗ +ATP + PA+ CTPC +Q−
(
BTP +DTPC

)T
Υ†(BTP +DTPC

)
= 0, P (T ) = H,(3.8)209

K̇ + (A+G)TK +K(A+G) +GTP + PG−QΓ + CTPḠ+ ḠTP (C + Ḡ)(3.9)210

− (BTP +DTPC)TΥ†(BTK +DTPḠ)− (BTK +DTPG)TΥ†(BTP +DTPC)211

− (BTK +DTPḠ)TΥ†(BTK +DTPḠ) = 0, K(T ) = −HΓ̂,212

dφ+
{[
A+G−BΥ†(BT (P +K) +DTP (C + Ḡ)

)]T
φ+

[
(P +K)FB(3.10)213

+ (C + Ḡ)TPF̄D −QΓ1

]
x0

}
dt− q0i dW0 = 0, φ(T ) = −HT

Γ̂1
x0(T ),214

where FB
∆
= F −BΥ†DTPF̄ and F̄D

∆
= F̄ −DΥ†DTPF̄ . We assume215

(A3) Equations (3.8)-(3.10) admit a set of solution (P,K,φ) such that Υ ≥ 0, and216

(3.11) R(BT ) ∪R(DTP ) ⊆ R(Υ).217

Let Π = P +K. Then Π satisfies218

Π̇ + (A+G)TΠ+Π(A+G)−
[
BTΠ+DTP (C +G)

]T
Υ†[BTΠ+DTP (C +G)

]
(3.12)219

+ (C +G)TP (C +G) +Q−QΓ = 0, Π(T ) = H −HΓ̂.220

Note that if Q ≥ 0 and H ≥ 0, then Q−QΓ = (I − Γ)TQ(I − Γ) ≥ 0 and H −HΓ̂ ≥ 0. Thus, when Q ≥ 0,221

R > 0 and H ≥ 0, (3.8) and (3.12) admit a unique solution, respectively. This implies (3.9) has a unique222

solution, which further gives (A3).223

From the above discussion, we have the following result.224

Proposition 3.3. Under (A3), the decentralized control given by (3.4) has a feedback representation225

(3.7).226

Applying (3.7) into (3.3), we obtain that x̄ = EF0 [x̄i] satisfies227

(3.13) dx̄ =
[(
A+G−BΥ†BTΠ−BΥ†DTP (C + Ḡ)

)
x̄−BΥ†BTφ+ (F −BΥ†DPF̄ )x0

]
dt.228

3.2. Optimization for the Leader. Denote Ā
∆
= A−BΥ†(BTP +DTPC), and C̄

∆
= C−DΥ†(BTP +229

DTPC). After applying the control laws of followers in (3.7), we have the following optimal control problem230

for the leader.231
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(P2): minimize J0(u0, u
∗(u0)) over u0 ∈ L2

Ft
(0, T ;Rm), where232

J0(u0, u
∗(u0)) = E

∫ T

0

[
|x0 − Γ0x

(N)
∗ |2Q0

+ |u0|2R0

]
dt+ E

[
|x0(T )− Γ̂0x

(N)
∗ (T )|2H0

]
,233

dx0 = (A0x0 +B0u0)dt+ (C0x0 +D0u0)dW0, 1x0(0) = ξ0,234

dx∗i =
[
Ax∗i +Gx

(N)
∗ −BΥ†((BTP +DTPC)x̄i + (BTK +DTPḠ)x̄+BTφ

)
+ FBx0

]
dt

(3.14)

235

+
[
Cx∗i + Ḡx

(N)
∗ −DΥ†((BTP +DTPC)x̄i + (BTK +DTPḠ)x̄+Bφ

)
+ F̄Dx0

]
dWi,236

x∗i (0) = ξi,237

dφ = −
{[
Ā+G−BΥ†(BTK +DTPḠ

)]T
φ+

[
(P +K)FB + (C + Ḡ)TPF̄D + (Γ− I)TQΓ1

]
x0

}
dt

(3.15)

238

+ q0i dW0, φ(T ) = (Γ̂− I)THΓ̂1x0(T ),239

where x∗i is the realized state under the control u∗i , i = 1, · · · , N , and x
(N)
∗ = 1

N

∑N
i=1 x

∗
i . From (3.15), we240

have241

dx
(N)
∗ =

[
(A+G)x

(N)
∗ −BΥ†((BTP +DTPC)x̄(N) + (BTK +DTPḠ)x̄+BTφ

)
+ FBx0

]
dt242

+
1

N

N∑
i=1

[
Cx∗i + Ḡx

(N)
∗ −DΥ†((BTP +DTPC)x̄i + (BTK +DTPḠ)x̄+Bφ

)
+ F̄Dx0

]
dWi,243

x
(N)
∗ (0) =

1

N

N∑
i=1

ξi,244

where x̄(N) = 1
N

∑N
i=1 x̄i. Note that {Wi} are independent Wiener processes and {xi(0)} are independent245

r.v.s. For the large population case, it is plausible to replace x̄(N), x
(N)
∗ by x̄, which evolves from (3.13).246

Then we have the limiting optimal control problem for the leader.247

(P2′): minimize J̄0(u0, u
∗(u0)) over u0 ∈ U0, where248

J̄0(u0, u
∗(u0)) =E

∫ T

0

[
|x0 − Γ0x̄|2Q0

+ |u0|2R0

]
dt+ E

[
|x0 − Γ̂0x̄(T )|2H0

]
,(3.16)249

subject to250

(3.17)



dx0 =(A0x0 +B0u0)dt+ (C0x0 +D0u0)dW0, x0(0) = ξ0,

dx̄ =
[
(Ā+ Ĝ)x̄−BΥ†BTφ+ (F −BΥ†DTPF̄ )x0

]
dt, x̄(0) = ξ̄,

dφ =−
{(
Ā+ Ĝ

)T
φ+

[
(P +K)FB + (C + Ḡ)TPF̄D + (Γ− I)TQΓ1

]
x0

}
dt

+ q0i dW0, φ(T ) = (Γ̂− I)THΓ̂1x0(T ).

251

with Ĝ
∆
= G−BΥ†(BTK +DTPḠ).252

We first provide the condition under which Problem (P2′) is convex. The proof is similar to [19], [49],253

and so omitted here.254

Lemma 3.4. J̄0(u0, u
∗(u0)) is convex in u0 if and only if J̄0

0 (u0, u
∗(u0)) ≥ 0, where255

J̄0
0 (u0, u

∗) =E
∫ T

0

[
|x00 − Γ0x̄

0|2Q0
+ |u0|2R0

]
dt+ E

[
|x00(T )− Γ̂0x̄

0(T )|2H0

]
,256

subject to257

(3.18)



dx00 =(A0x
0
0 +B0u0)dt+ (C0x

0
0 +D0u0)dW0, x

0
0(0) = 0,

dx̄0 =[(Ā+ Ĝ)x̄0 −BΥ†BTφ0 + (F −BΥ†DTPF̄ )x00]dt, x̄
0(0) = 0,

dφ0 =−
{(
Ā+ Ĝ

)T
φ0 +

[
(P +K)FB + (C + Ḡ)TPF̄D + (Γ− I)TQΓ1

]
x00

}
dt

+ q0,0i dW0, φ
0(T ) = (Γ̂− I)THΓ̂1x

0
0(T ).

258
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We now give the following maximum principle for (P2′).259

Theorem 3.5. Assume (A1)-(A3) hold. Problem (P2′) admits an optimal control u∗0 if and only if260

J̄0(u0, u
∗(u0)) is convex in u0, and the following FBSDE261

(3.19)



dy0 =−
{
AT

0 y0 + CT
0 β0 + (F −BΥ†DTPF̄ )T ȳ +

[
(P +K)FB + (C + Ḡ)TPF̄D −QΓ1

]T
ψ

+Q0(x
∗
0 − Γ0x̄

∗)
}
dt+ β0dW0, y0(T ) = H0(x0(T )− Γ̂0x̄

∗(T ))−HT
Γ̂1
ψ(T ),

dȳ =− [(Ā+ Ĝ)T ȳ − ΓT
0Q0(x

∗
0 − Γ0x̄

∗)] + β̄dW0, ȳ(T ) = −Γ̂T
0H0(x

∗
0(T )− Γ̂0x̄

∗(T )),

dψ =
[
(Ā+ Ĝ)ψ −BΥ†BT ȳ

]
dt, ψ(0) = 0

262

has a solution such that u∗0 satisfies R0u
∗
0 +BT

0 y0 +DT
0 β0 = 0.263

Proof. Suppose {u∗0} is a candidate of the optimal control of Problem (P2′). Let x∗0 and x̄∗ be the leader’s264

state and followers’ average effect under the control {u∗0}. Note that265

J̄0(u
∗
0 + θu0, u(u

∗
0 + θu0))− J̄0(u

∗
0, u

∗(u∗0)) = 2θI1 + θ2I2,(3.20)266

where267

I1 =E
∫ T

0

[
⟨Q0(x

∗
0 − Γ0x̄∗), x

0
0 − Γ0x̄

0⟩+ ⟨u∗0, R0u0⟩
]
dt(3.21)268

+ E
[
⟨H0(x

∗
0(T )− Γ̂0x̄

∗(T )), x00(T )− Γ̂0x̄
0(T )⟩

]
,269

I2 =E
∫ T

0

[
|x00 − Γ0x̄

0|2Q0
+ |u0|2R0

]
dt+ E

[
|x00(T )− Γ̂0x̄

0(T )|2H0

]
.(3.22)270

Note that for the given x∗0 and x̄∗, FBSDE (3.19) admits a unique solution (One can solve BSDE for (ȳ, β̄)271

first, then solve FSDE for ψ and finally solve BSDE for (y0, β0)). From (3.18) and (3.19), applying Itô’s272

formula, we obtain273

E[⟨H0(x
∗
0 − Γ̂0x̄

∗) + Γ̂T
1H(Γ̂− I)ψ(T ), x00(T )⟩] = E[⟨y0(T ), x00(T )⟩ − ⟨y0(0), x00(0)⟩](3.23)274

=E
∫ T

0

{〈
−
[
(F −BΥ†DTPF̄ )T ȳ + ⟨BT

0 y0 +DT
0 β0, u0⟩+

[
(P +K)FB + (C + Ḡ)TPF̄D275

+ (Γ− I)TQΓ1

]T
ψ +Q0(x

∗
0 − Γ0x̄

∗)
]
, x00

〉}
dt,276

− E[⟨Γ̂T
0H0(x

∗
0 − Γ̂0x̄

∗), x̄0(T )⟩] = E[⟨ȳ(T ), x̄0(T )⟩ − ⟨ȳ(0), x̄0(0)⟩](3.24)277

=E
∫ T

0

[
⟨ΓT

0Q0(x0 − Γ0x̄), x̄
0⟩ − ⟨BΥ†BT ȳ, φ0⟩+ ⟨(F −BΥ†DTPF̄ )T ȳ, x00⟩

]
dt.278

and279

E[⟨(Γ̂− I)THΓ̂1x
0
0(T ), ψ(T )⟩] = E[⟨φ0(T ), ψ(T )⟩ − ⟨φ0(0), ψ(0)⟩](3.25)280

=E
∫ T

0

[
⟨−BΥ†BT ȳ, φ0⟩ −

〈[
(P +K)FB + (C + Ḡ)TPF̄D + (Γ− I)TQΓ1

]T
ψ, x00

〉]
dt.281

From (3.21) and (3.23)-(3.25), it follows that I1 =E
∫ T

0

〈
BT

0 y0 +DT
0 β0 +Ru∗0, u0

〉
dt. Note that θ is arbi-282

trary. By (3.20), u∗0 is a minimizer of (P2′) if and only if I1 = 0 and I2 ≥ 0. Indeed, if I2 ≥ 0 does not hold,283

then there exists some ǔ0 ∈ U0 such that J̄0
0 (ǔ0, u

∗) < 0. Then we have J̄0
0 (kǔ0, u

∗) = k2J̄0
0 (ǔ0, u

∗) → −∞284

(k → ∞), which implies the minimization problem should be ill-posed. Thus, by Lemma 3.4, u∗0 is an285

optimal control of (P2′) if and only if Ru∗0 +BT
0 y0 +DT

0 β0 = 0 and J̄0(u0, u(u0)) is convex in u0. □286

Let X = [xT0 , x̄
T, ψT ]T , Y = [yT0 , ȳ

T, φT ]T , Z = [βT
0 , β̄

T, (q0i )
T ]T ,B0 = [BT

0 , 0, 0]
T ,D0 = [DT

0 , 0, 0]
T , and

A =

 A0 0 0

F −BΥ†DTPF̄ Ā+ Ĝ 0

0 0 Ā+ Ĝ

 ,B =

 0 0 0
0 0 BΥ†BT

0 BΥ†BT 0

 ,
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C0 =

 C0 0 0
0 0 0
0 0 0

 ,H0 =

 H0 −H0Γ̂0 Γ̂T
1H(Γ̂− I)

−Γ̂T
0H0 ΓT

0H0Γ0 0

(Γ̂− I)THΓ̂1 0 0

 ,

Q=



−Q0 Q0Γ0 ΓT
1Q(I − Γ)− FT

BΠ
−F̄T

DP (C + Ḡ)

ΓT
0Q0 −ΓT

0Q0Γ0 0

(I − Γ)TQΓ1 −ΠFB

−(C + Ḡ)PF̄D 0 0


.

With above notations, we can rewrite (3.17) and (3.19) as287

(3.26)

{
dX = (AX − BY + B0u

∗
0)dt+ (C0X +D0u

∗
0)dW0, X(0) = [ξT0 , ξ̄

T , 0]T

dY = (QX −ATY − CT
0 Z)dt+ ZdW0, Y (T ) = H0X(T ),

288

together with the condition289

(3.27) R0u
∗
0 + BT

0 Y +DT
0 Z = 0.290

We now provide a sufficient condition to guarantee the solvability of (3.26).291

Proposition 3.6. Denote Υ0=R0 +DT
0 PD0. If the equation292

Ṗ + PA+ATP + CT
0 PC0 −Q− PBP − (BT

0 P +DT
0 PC0)TΥ†

0(BT
0 P +DT

0 PC0) = 0,(3.28)293

with P(T ) = H0 has a solution in [0, T ], then FBSDE (3.26) is solvable.294

Proof. Let Ȳ = PX and Z̄ = P
[
C0 − DT

0 Υ
†
0(BT

0 P + DT
0 PC0)

]
X, where P is a solution to (3.28). Let295

u0 = −Υ†
0(BT

0 P +DT
0 PC0)X. Denote Ỹ = Y − Ȳ and Z̃ = Z − Z̄. Then a direct computation shows296

dỸ =[(PB −AT )Ỹ − CT
0 Z̃]dt+ Z̃dW0, Ỹ (T ) = 0.297

It is clear that such a backward SDE admits a unique solution Ỹ = Z̃ = 0 ([32]). Hence, Y = PX and298

Z = P
[
C0 −DT

0 Υ
†
0(BT

0 P +DT
0 PC0)

]
X. Then FBSDE (3.26) admits an adapted solution. □299

Remark 3.7. Note that B, Q and H0 are symmetric matrices. We find that (3.28) is a symmetric Riccati300

equation. The existence condition of its solution may be referred in [1], [32].301

For further analysis, assume302

(A4) Equation (3.28) admits a solution in C[0, T ;R3n].303

Under (A4), we construct the following decentralized control laws304

(3.29)

{
u∗0 =−Υ†

0(BT
0 P +DT

0 PC0)X,
u∗i =−Υ†[(BTP +DTPC

)
x̄i +BTφ+DTPF̄x∗0 +

(
BTK +DTPḠ

)
EF0 [x̄i]

]305

where X, x̄i is given by (3.26), (3.3), and x∗0 is the realized state under the control u∗0.306

Theorem 3.8. Assume that (A1)-(A4) hold. Then (u∗0, u
∗
1, · · · , û∗) given in (3.29) is an open-loop307

(ε1, ε2)-Stackelberg equilibrium, where εi = O(1/
√
N), i = 1, 2.308

Proof. See Appendix A. □309

Theorem 3.9. For Problem (PO), assume (A1)-(A4) hold, and ξi, i = 1, · · · , N have the same variance.310

Under the control (3.29), the corresponding social cost is given by311

(3.30) J (N)
soc (u∗, u∗0) = E[|ξi|2P (0) + |ξ̄0|2K(0) + 2φT (0)x̄0] + sT ,312

and the asymptotic cost of the leader is limN→∞ J0(u
∗
0, u

∗) = E
[
ξT0 y0(0) + ξ̄T ȳ(0)

]
, where313

sT =E
∫ T

0

[
|F̄ x0|2P − |BTφ+DTPF̄x0|2Υ† + 2φTFx0 + |Γ1x0|2Q

]
dt.(3.31)314

Proof. See Appendix B. □315
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4. Feedback Solutions to MF Leader-Follower Games. In this section, we consider the feedback316

solution to the MF Stackelberg game (2.1)-(2.4). For simplicity, we consider the case that Q ≥ 0, Q0 ≥317

0, R > 0, R0 > 0, H ≥ 0 and H0 ≥ 0.318

4.1. The MF Social Control Problem for N Followers. Note that the leader plays against all319

followers. Assume that the leader admits a feedback control of the following form320

(4.1) u0 = P0x0 + P̄ x(N),321

where P0 and P̄ are fixed. Thus, we have the following social control problem for N followers.322

(P3): minimize J
(N)
soc (u) over u ∈ Uc, where u0 = P0x0 + P̄ x(N) and323

(4.2) J (N)
soc (u) =

1

N

N∑
i=1

E
∫ T

0

{∣∣xi − Γx(N)− Γ1x0
∣∣2
Q
+ |ui|2R

}
dt+

1

N

N∑
i=1

E
[
|xi(T )− Γ̂x(N)(T )− Γ̂1x0(T )|2H

]
.324

By examining the social cost variation, we obtain the optimal control laws for N followers.325

Theorem 4.1. Suppose Q ≥ 0, R > 0 and H ≥ 0. Assume the leader has the feedback control (4.1).326

Then Problem (P3) has an optimal control in Uc if and only if the following system of FBSDEs admits a set327

of adapted solutions {xi, pi, qji , i, j = 0, 1, · · · , N}:328

(4.3)



dx0 =
[
A0x0 +B0(P0x0 + P̄ x(N))

]
dt+

[
C0x0 +D0(P0x0 + P̄ x(N))

]
dW0,

dxi =(Axi +Bŭi +Gx(N) + Fx0)dt+ (Cxi +Dŭi + Ḡx(N) + F̄ x0)dWi,

dp0 =−
[
(A0 +B0P0)

T p0 + FT p(N) + (C0 +D0P0)
T q00 + F̄T q(N)

−QT
Γ1
x(N) + ΓT

1QΓ1x0)
]
+

N∑
j=0

qj0dWj ,

dpi =−
[
AT pi +GT p(N) + P̄TBT

0 p0 + CT qii + ḠT q(N) + P̄TDT
0 q

0
0

+Qxi −QΓx
(N) −QΓ1

Γ1x0
]
dt+

N∑
j=0

qji dWj ,

x0(0) = ξ0, xi(0) = ξi, p0(T ) = −HT
Γ̂1
x(N)(T ) + Γ̂T

1HΓ̂1x0(T ),

pi(T ) = Hxi(T )−HΓ̂x
(N)(T )−HΓ̂1

x0(T ), i = 1, · · · , N.

329

Furthermore, the optimal controls of followers are given by330

(4.4) ŭi = −R−1(BT pi +DT qii), i = 1, · · · , N.331

Proof. See Appendix C. □332

Remark 4.2. For the feedback solution case, the term x(N) appears in leader’s dynamics. Different from333

the open-loop case, an additional costate p0 is needed. Indeed, as ui is perturbed with δui, the changing334

magnitude of x(N) is O(∥δui∥/N), which causes the perturbation O(∥δui∥) of Jsoc(u). This is evidently335

different from the game problem.336
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Define337

(4.5)



ṀN +ATMN +MT
NA+ CTMNC +Q− (BTMN +DT M̌NC)

TΥ−1
N

× (BTMN +DT M̌NC) = 0, MN (T ) = H,

˙̄MN + (A+G)T M̄N + M̄N (A+G) +GTMN +MNG+ CT M̌N Ḡ

+ ḠT M̌N (C + Ḡ)−QΓ + P̄TDT
0 Λ̌

0
ND0P̄ +M0

NB0P̄ + P̄TBT
0 Λ̄N

−
(
BTMN +DT M̌NC

)T
Υ−1

N (BT M̄N +DT M̌N Ḡ)

−
(
BM̄N +DT M̌N Ḡ

)T
Υ−1

N

(
BTMN +DT M̌NC

)
−
(
BM̄N +DT M̌N Ḡ

)T
Υ−1

N

(
BT M̄N +DT M̌N Ḡ

)
= 0, M̄N (T ) = −HΓ̂,

Ṁ0
N + (A+G)TM0

N +M0
N (A0 +B0P0) + (MN + M̄N )F + P̄TBT

0 Λ
0
N

− [BT (MN + M̄N ) +DT M̌N (C + Ḡ)]TΥ−1
N (BTM0

N +DT M̌F̄ )

+ (C + Ḡ)T M̌N F̄ + P̄TDT
0 Λ̌

0
N (C0 +D0P0) + (Γ− I)TQΓ1 = 0,

M0
N (T ) = (Γ̂− I)THΓ̂1,

338

339

(4.6)



Λ̇0
N + Λ0

N (A0 +B0P0) + (A0 +B0P0)
TΛ0

N + (C0 +D0P0)
T Λ̌0

N (C0 +D0P0)

− (BT Λ̄T
N +DT M̌N F̄ )

TΥ−1
N (BTM0

N +DT M̌N F̄ )

+ Λ̄NF + FTM0
N + F̄T M̌F̄ + ΓT

1QΓ1 = 0, Λ0
N (T ) = Γ̂T

1HΓ̂1,

˙̄ΛN + Λ̄N (A+G) + (A0 +B0P0)
T Λ̄N + FT (MN + M̄N ) + Λ0

NB0P̄

− (BT Λ̄T
N +DT M̌N F̄ )

TΥ−1
N [BT (MN + M̄N ) +DT M̌N (C + Ḡ)]

+ F̄T M̌N (C + Ḡ) + ΓT
1Q(Γ− I) = 0, Λ̄N (T ) = Γ̂T

1H(Γ̂− I).

340

Proposition 4.3. Assume (A1) holds, and (4.5)-(4.6) admit solutions, respectively. Then, Problem341

(P3) admits a feedback solution (4.9).342

Proof. Let p0 = Λ0
Nx0+Λ̄Nx

(N), and pi =MNxi+M̄Nx
(N)+M0

Nx0, i = 1, · · · , N. Denote ŭ(N) = 1
N

∑N
i=1 ŭi.343

By applying Itô’s formula to pi, we have344

dpi =ṀNxidt+MN

[
(Axi +Bǔi +Gx(N) + Fx0)dt+ (Cxi +Dǔi + Ḡx(N) + F̄ x0)dWi

]
(4.7)345

+ ˙̄MNx
(N) + M̄N

[
(A+G)x(N) +Bǔ(N) + Fx0)dt+

1

N

N∑
j=1

(Cxj +Dǔj + Ḡx(N) + F̄ x0)dWj

]
346

+ Ṁ0
Nx0dt+M0

N

[(
A0x0 +B0(P0x0 + P̄ x(N))

)
dt+

(
C0x0 +D0(P0x0 + P̄ x(N))

)
dW0

]
347

=−
[
AT (MNxi + M̄Nx

(N) +M0
Nx0) +GT

(
(MN + M̄N )x(N) +M0

Nx0
)
+ P̄TBT

0 p0348

+ CT qii + ḠT q(N) + P̄TDT
0 q

0
0 +Qxi −QΓx

(N) + (Γ− I)TQΓ1x0
]
dt+

N∑
j=0

qji dWj ,349

which together with (4.3) implies350

(4.8)
qii =

(
MN +

1

N
M̄N

)
(Cxi +Dǔi + Ḡx(N) + F̄ x0),

qji =
1

N
M̄N (Cxj +Dǔj + Ḡx(N) + F̄ x0), j ̸= i.

351

By (4.4), we have for any i = 1, · · · , N ,352

Rŭi +BT (MNxi + M̄Nx
(N) +M0

Nx0) +DT
(
MN +

1

N
M̄N

)
(Cxi +Dǔi + Ḡx(N) + F̄ x0) = 0.353

This leads to354

(4.9) ŭi = −Υ−1
N

[
(BTMN +DT M̌NC)xi + (BT M̄N +DT M̌N Ḡ)x

(N) + (BTM0
N +DT M̌N F̄ )x0

]
,355
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where M̌N
∆
=M + 1

N M̄N and ΥN
∆
= R+DT M̌ND. Denote Λ̌0

N
∆
= Λ0

N + 1
N Λ̄N . Applying Itô’s formula to p0,356

we obtain357

dp0 =−
[
(A0 +B0P0)

T (Λ0
Nx0 + Λ̄Nx

(N)) + FT
(
(M + M̄N )x(N) +M0

Nx0
)

(4.10)358

+ (C0 +D0P0)
T q00 + F̄T q(N) − ΓT

1Q((I − Γ)x(N) − Γ1x0)
]
dt+

N∑
j=0

qj0dWj ,359

which together with (4.3) implies360

(4.11)
q00 = Λ̌0

N

(
C0x0 +D0(P0x0 + P̄ x(N))

)
,

qj0 =
1

N
Λ̄
(
C0x0 +D0(P0x0 + P̄ x(N))

)
, j > 0.

361

Applying (4.8), (4.9) and (4.11) into (4.7), we obtain (4.5). Applying (4.8), (4.9) and (4.11) into (4.10), we362

have (4.6). Based on Theorem 4.1 and the above discussion, the proposition follows. □363

Remark 4.4. Note that the social problem (P3) is essentially an optimal control problem. The feedback364

solution to Problem (P3) is equivalent to the feedback representation of its open-loop solution.365

We now introduce the following set of equations:366

(4.12)



Ṁ +ATM +MTA+ CTMC +Q− (BTM +DTMC)TΥ−1

× (BTM +DTMC) = 0, M(T ) = H,

˙̄M + (A+G)T M̄ + M̄(A+G) +GTM +MG+ CTMḠ+ ḠTM(C + Ḡ)

−
(
BTM +DTMC

)T
Υ−1(BT M̄ +DTMḠ) + P̄TDT

0 Λ
0D0P̄ + P̄TBT

0 Λ̄

−
(
BM̄ +DTMḠ

)T
Υ−1

(
BTM +DTMC

)
−QΓ +M0B0P̄

−
(
BM̄ +DTMḠ

)T
Υ−1

(
BT M̄ +DTMḠ

)
= 0, M̄(T ) = −HΓ̂,

Ṁ0 + (A+G)TM0 +M0(A0 +B0P0) + (M + M̄)F + P̄TBT
0 Λ

0

− [BT (M + M̄) +DTM(C + Ḡ)]TΥ−1(BTM0 +DTMF̄ ) + (C + Ḡ)TMF̄

+ P̄TDT
0 Λ

0(C0 +D0P0)) + (Γ− I)TQΓ1 = 0, M0(T ) = (Γ̂− I)THΓ̂1,

Λ̇0 + Λ0(A0 +B0P0) + (A0 +B0P0)
TΛ0 + (C0 +D0P0)

TΛ0(C0 +D0P0)

− (BT Λ̄T +DTMF̄ )TΥ−1(BTM0 +DTMF̄ ) + Λ̄F + FTM0 + F̄TMF̄

+ ΓT
1QΓ1 = 0, Λ0(T ) = Γ̂T

1HΓ̂1,

˙̄Λ + Λ̄(A+G) + (A0 +B0P0)
T Λ̄ + FT (M + M̄) + Λ0B0P̄

− (BT Λ̄T +DTMF̄ )TΥ−1[BT (M + M̄) +DTM(C + Ḡ)] + F̄TM(C + Ḡ)

+ ΓT
1Q(Γ− I) = 0, Λ̄(T ) = Γ̂T

1H(Γ̂− I),

367

where Υ
∆
= R+DTMD. From observation, we find that M, M̄,Λ0 are symmetric and M0 = Λ̄T . For further368

analysis, we assume369

(A5) (4.12) admits a solution (M,M̄,M0,Λ0, Λ̄).370

Remark 4.5. If (A5) holds, then by the continuous dependence of solutions on the parameter (see e.g.371

[28, Theorem 3.5] or [27, Theorem 4]), we obtain that for sufficiently large N , (4.5) and (4.6) admit solutions,372

respectively.373

After applying the strategies of followers (4.9), we have374

dxi =
[
(A−BΥ−1

N ΨN )xi + (G−BΥ−1
N Ψ̄N )x(N) + (F −BΥ−1

N Ψ0
N )x0

]
dt(4.13)375

+
[
(C −DΥ−1

N ΨN )xi + (Ḡ−DΥ−1
N Ψ̄N )x(N) + (F̄ −DΥ−1

N Ψ0
N )x0

]
dWi,376
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where ΨN
∆
= BTMN +DT M̌NC, Ψ̄N = BT M̄N +DT M̌N Ḡ, and Ψ0

N = BTM0
N +DT M̌N F̄ . This leads to377

dx(N) =
[(
A+G−BΥ−1

N (ΨN + Ψ̄N )
)
x(N) + (F −BΥ−1

N Ψ0
N )x0

]
dt378

+
1

N

N∑
i=1

[
(C −DΥ−1

N ΨN )xi + (Ḡ−DΥ−1
N Ψ̄N )x(N) + (F̄ −DΥ−1

N Ψ0
N )x0

]
dWi.379

For a sufficiently large N , by Remark 4.5 and the law of large numbers, x(N) can be approximated by the380

MF function x̄, which satisfies381

dx̄ =
[(
A+G−BΥ−1(Ψ + Ψ̄)

)
x̄+ (F −BΥ−1Ψ0)x0

]
dt,(4.14)382

with383

(4.15)
Ψ

∆
= BTM +DTMC, Ψ̄

∆
= BT M̄ +DTMḠ,

Ψ0 ∆
= BTM0 +DTMF̄ .

384

Based on Proposition 4.3, one can construct the decentralized feedback strategies for followers:385

(4.16) ûi = −Υ−1(Ψxi + Ψ̄x̄+Ψ0x0).386

4.2. Optimization for the Leader. After applying the strategies (4.16) of followers, we have the387

optimal control problem for the leader.388

(P4): minimize J0(u0, û(u0)) over u0 ∈ U0
d , where389

J0(u0, û(u0)) = E
∫ T

0

[
|x0 − Γ0x̂

(N)|2Q0
+ |u0|2R0

]
dt+ E

[
|x0(T )− Γ̂0x

(N)(T )|2H0

]
,390

dx0 =
(
A0x0 +B0u0

)
dt+

(
C0x0 +D0u0

)
dW0, x0(0) = ξ0,391

dx̂i =
[
(A−BΥ−1Ψ)x̂i +Gx̂(N) −BΥ−1Ψ̄x̄+ (F −BΥ−1Ψ0)x0

]
dt392

+
[
(C −DΥ−1Ψ)x̂i + Ḡx̂(N) −DΥ−1Ψ̄x̄+ (F̄ −DΥ−1Ψ0)x0

]
dWi, x̂i(0) = ξi.393

Since {Wi(t)} and {xi(0)} are independent sequences, for a sufficiently large N , it is plausible to replace394

x̂(N) by x̄, which evolves from (4.14). In view of (4.1), suppose that the decentralized feedback solution for395

the leader has the following form u0(t) = P0(t)x0 + P̄ (t)x̄, 0 ≤ t ≤ T. Then, we have the following optimal396

control problem for the leader.397

(P4′): minimize J̄0(P0, P̄ ) over P0, P̄ ∈ C(0, T ;Rm×n), where398 
J̄0(P0, P̄ ) = E

∫ T

0

[
|x0 − Γ0x̄|2Q0

+ |P0x0 + P̄ x̄|2R0

]
dt+ E

[
|x0(T )− Γ̂0x̄(T )|2H0

]
,

dx0 =
[
(A0 +B0P0)x0 +B0P̄ x̄

]
dt+

[(
C0 +D0P0

)
x0 +D0P̄ x̄

]
dW0, x0(0) = ξ0,

dx̄ =
[(
A+G−BΥ−1(Ψ + Ψ̄)

)
x̄+ (F −BΥ−1Ψ0)x0

]
dt, x̄(0) = ξ̄.

399

Let X0 = E[x0xT0 ], X̄ = E[x̄x̄T ] and Y = E[x̄xT0 ]. Then, by Itô’s formula [60], we obtain400

dX0

dt
=(A0 +B0P0)X0 +X0(A0 +B0P0)

T +B0P̄ Y + Y T (B0P̄ )
T(4.17)401

+ (C0 +D0P0)X0(C0 +D0P0)
T + (C0 +D0P0)Y

T (D0P̄ )
T

402

+D0P̄ Y (C0 +D0P0)
T +D0P̄ X̄(D0P̄ )

T ,403

dX̄

dt
=(A+G−BΥ−1(Ψ + Ψ̄))X̄ + X̄(A+G−BΥ−1(Ψ + Ψ̄))T(4.18)404

+ (F −BΥ−1Ψ0)Y T + Y (F −BΥ−1Ψ0)T ,405

dY

dt
=(A+G−BΥ−1(Ψ + Ψ̄))Y + (F −BΥ−1Ψ0)X0406

+ Y (A0 +B0P0)
T + X̄(B0P̄ )

T .(4.19)407
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Meanwhile, the cost function of the leader can be rewritten as408

J̄0(P0, P̄ ) =

∫ T

0

tr
(
Q0X0 −Q0Γ0Y − ΓT

0Q0Y
T + ΓT

0Q0Γ0X̄409

+ PT
0 R0P0X0 + P̄TR0P0Y

T + PT
0 R0P̄ Y + P̄TR0P̄ X̄

)
dt410

+ tr
[
H0X0(T )−H0Γ̂0Y (T )− Γ̂T

0H0Y
T (T ) + Γ̂T

0H0Γ̂0X̄(T )
]
.411

Denote Â0
∆
= A0 + B0P0, Ĉ0

∆
= C0 + D0P0, F̂

∆
= F − BΥ−1Ψ0, Â

∆
= A + G − BΥ−1(Ψ + Ψ̄). Define the412

Hamiltonian function of the leader as follow:413

H(P0, P̄ ,Θ1,Θ2,Θ3)414

=tr
(
Q0X0 −Q0Γ0Y − ΓT

0Q0Y
T + ΓT

0Q0Γ0X̄ + PT
0 R0P0X0 + P̄TR0P0Y

T
415

+ PT
0 R0P̄ Y + P̄TR0P̄ X̄ + [Â0X0 +X0Â

T
0 +B0P̄ Y + Y T (B0P̄ )

T + Ĉ0X0Ĉ
T
0416

+ Ĉ0Y
T (D0P̄ )

T +D0P̄ Y Ĉ
T
0 +D0P̄ X̄(D0P̄ )

T ]ΘT
1 + [ÂX̄ + X̄ÂT + F̂ Y T + Y F̂T ]ΘT

2417

+
[
ÂY + F̂X0 + Y ÂT

0 + X̄(B0P̄ )
T
]
ΘT

3 +
[
ÂY + F̂X0 + Y ÂT

0 + X̄(B0P̄ )
T
]T

Θ3

)
.418

By the matrix maximum principle [4], we obtain the following adjoint equations:419

(4.20)



−Θ̇1 =
∂H

∂X0
= Q0 + PT

0 R0P0 + ÂT
0 Θ1 +Θ1Â0 + ĈT

0 Θ1Ĉ0 + F̂TΘ3 +ΘT
3 F̂ ,

−Θ̇2 =
∂H

∂X̄
= ΓT

0QΓ0 + P̄TR0P̄ + ÂTΘ2 +Θ2Â+Θ3B0P̄ + (Θ3B0P̄ )
T ,

−Θ̇3 =
∂H

∂Y
= P̄TR0P0 − ΓT

0Q0 + (B0P̄ )
TΘT

1 +Θ2F̂ + (D0P̄ )
TΘ1Ĉ0 + ÂTΘ3 +Θ3Â0,

420

with the stationarity conditions421

0 =
∂H

∂P0
= 2(R0P0X0 +R0P̄ Y +BT

0 Θ1X0 +DT
0 Θ1Ĉ0X0 +DT

0 Θ1D0P̄ Y +BT
0 Θ

T
3 Y ),(4.21)422

0 =
∂H

∂P̄
= 2(R0P0Y

T +R0P̄ X̄ +BT
0 Θ1Y

T +DT
0 Θ1Ĉ0Y

T +DT
0 Θ1D0P̄ X̄ +BT

0 Θ
T
3 X̄).(4.22)423

Note that Θ1 and Θ2 are symmetric matrices. From (4.21) and (4.22), we obtain424

(4.23)

{
P0 = −R−1

0 (BT
0 Θ1 +DT

0 Θ1C0),

P̄ = −Υ−1
0 BT

0 Θ
T
3 ,

425

where Υ0=R0 +DT
0 Θ1D0. After applying this into (4.20), we have426

(4.24)



Θ̇1 +AT
0 Θ1 +Θ1A0 + CT

0 Θ1C0 − (BT
0 Θ1 +DT

0 Θ1C0)
TΥ−1

0 (BT
0 Θ1 +DT

0 Θ1C0)

+ F̂TΘ3 +ΘT
3 F̂ +Q0 = 0, Θ1(T ) = H0,

Θ̇2 + ÂTΘ2 +Θ2Â−Θ3B0Υ
−1
0 BT

0 Θ
T
3 + ΓT

0QΓ0 = 0, Θ2(T ) = Γ̂T
0H0Γ̂0,

Θ̇3 + ÂTΘ3 +Θ3A0 −Θ3B0Υ
−1
0 (BT

0 Θ1 +DT
0 Θ1C0) + ΘT

2 F̂ + ΓT
0Q0 = 0,

Θ3(T ) = −Γ̂T
0H0.

427

Based on the above discussions, we may construct the following feedback strategies:428

(4.25)

{
û0 =−Υ−1

0

[
(BT

0 Θ1 +DT
0 Θ1C0)x0 +BT

0 Θ
T
3 x̄)

]
,

ûi =−Υ−1(Ψxi + Ψ̄x̄+Ψ0x0), i = 1, · · · , N,
429

where x̄ satisfies (4.14), and Ψ, Ψ̄ and Ψ0 are given by (4.15).430
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Theorem 4.6. For Problem (PF), assume (A1) holds; (4.12) and (4.24) admit a set of solutions. Then,431

the strategy (4.25) is a feedback (ϵ1, ϵ2)-Stackelberg equilibrium, where ϵ1 = ϵ2 = O( 1√
N
). Furthermore,432

assume that ξi, i = 1, · · · , N have the same variance. Then, the asymptotic average social cost of followers433

is given by434

lim
N→∞

1

N
Jsoc(û, û0) = E[|ξi|2M(0) + |ξ̄|2M̄(0) + 2ξT0 Λ̄(0)ξi + |ξ0|2Λ0(0)

],435

and436

lim
N→∞

J0(û, û0) = E[ξT0 Θ1(0)ξ0 + ξ̄TΘ2(0)ξ̄ + ξ̄TΘ3(0)ξ0].437

Proof. See Appendix C. □438

5. Simulation. In this section, we give a numerical example to compare the performances of the open-439

loop and feedback solutions. The simulation parameters are listed in Table 1.440

Table 1
Simulation parameters

A0 B0 C0 D0 Γ0 Q0 R0 Γ̂0 H0

−10 1 −0.5 0.5 1 1 1 1 2

A B G F C D Ḡ F̄ Γ Γ1 Q R Γ̂ Γ̂1 H

−2 1 1 1 −0.2 0.2 0.2 0.2 1 1 1 1 1 1 2

Consider a multi-agent system with 1 leader and 100 followers. The initial distributions of states for the441

leader and followers satisfy normal distributions N(10, 2) and N(5, 1), respectively. The decentralized open-442

loop control (3.29) is given by solving (3.8), (3.9), (3.13) and (3.28). The solution to the Riccati equation443

(3.28) is shown in Fig. 1. The decentralized feedback strategy (4.25) is obtained by solving (4.12) and (4.24).444

The solutions to (4.12) and (4.24) are shown in Fig. 2. Fig. 3 gives the curves of followers’ state averages and445

MF effects under open-loop and feedback solutions. Fig. 4 shows the state trajectories of the leader under446

the two solutions. It can be seen that state averages approximate MF effects well under both solutions, and447

the state average under open-loop control is larger than the one under feedback control.448

0 1 2 3 4 5 6 7 8 9 10
t

0

2

4

6

Fig. 1. The solution to the Riccati equation (3.28), and Pi,j is the entry in ith row jth column of P.

0 1 2 3 4 5 6 7 8 9 10
t

0

2

4

6

8

10

Fig. 2. The solutions to (4.12) and (4.24).
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

-100

-50

0

Fig. 3. Followers’ state averages and MF effects under open-loop and feedback controls.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0

50

100

150

Fig. 4. States of the leader under open-loop and feedback controls.

6. Concluding Remarks. This paper studies open-loop and feedback solutions of MF-LQG Stackel-449

berg games with multiplicative noise. By decoupling MF FBSDEs and applying MF approximations, we450

obtain a set of open-loop controls of players and a set of decentralized feedback strategies, respectively.451

Furthermore, the corresponding optimal costs of all players are explicitly given in terms of the solutions to452

two Riccati equations, respectively. A challenge is computing the system of Riccati equations for feedback453

strategies. A possible approach is resorting to reinforcement learning even if dynamics are partially unknown.454

Appendix A. Proof of Theorem 3.8.455

To prove Theorem 3.8, we provide two lemmas.456

Lemma A.1. Assume that (A1)-(A4) hold. Then, the following holds:457

sup
0≤t≤T

E
[
|x̄(N) − x̄|2 + |p̄(N) − EF0 [p̄i]|2 + |q̄(N) − EF0 [q̄ii ]|2

]
= O(

1

N
),(A.1)458

where p̄(N) = 1
N

∑N
i=1 p̄i and q̄

(N) = 1
N

∑N
i=1 q̄

i
i .459

Proof. After applying u∗i , i = 0, · · · , N , we have460

dx̄i =
(
Āx̄i + Ĝx̄−BΥ†BTφ+ FBx

∗
0

)
dt(A.2)461

+
[
C̄x̄i +

(
Ḡ−DΥ†(BTK +DTPḠ)

)
x̄−DΥ†Bφ+ F̄Dx

∗
0

]
dWi.462

By (A4), E
∫ T

0
|u∗0|2dt ≤ c1. Then, it leads to E

∫ T

0
|x∗0|2dt ≤ c2. By (3.13), max0≤t≤T E[|x̄(t)|2] ≤ c3. This463

further gives that sup0≤t≤T E[|x̄i(t)|2] ≤ c4. By (A.2) and (3.13), we obtain464

d(x̄(N) − x̄) = Ā(x̄(N) − x̄)dt465

+
1

N

N∑
i=1

[
C̄x̄i +

(
Ḡ−DΥ†(BTK +DTPḠ)

)
x̄−DΥ†Bφ+ F̄Dx

∗
0

]
dWi,466

which gives467

x̄(N)(t)− x̄(t) = Φ(t, 0)[x̄(N)(0)− x̄(0)]468

+
1

N

N∑
i=1

∫ t

0

Φ(t, s)
[
C̄x̄i +

(
Ḡ−DΥ†(BTK +DTPḠ)

)
x̄−DΥ†Bφ+ F̄Dx

∗
0

]
dWi(s).469
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Here, Φ(t, s) satisfies dΦ(t,s)
dt = ĀΦ(t, s), Φ(s, s) = I. By (A1), we further have470

E|x̄(N)(t)− x̄(t)|2(A.3)471

≤
∣∣Φ(t, 0)∣∣2E|x̄(N)(0)− x̄(0)|2 + 1

N2

N∑
i=1

∫ t

0

c1
∣∣Φ(t, s)∣∣2 max

1≤i≤N
E
(
|x̄i|2 + |x̄|2 + |φ|2 + |x∗0|2)ds472

≤ 1

N

{∣∣Φ(t, 0)∣∣2 max
1≤i≤N

[
E|xi0|2 + c2 sup

0≤t≤T
E
(
|x̄i|2 + |x̄|2 + |φ|2 + |x∗0|2)

]}
= O(

1

N
).473

Note that p̄i = Px̄i +Kx̄+ φ. Then, we have

sup
0≤t≤T

E
[
|p̄(N)(t)− EF0 [p̄i(t)]|2

]
= sup

0≤t≤T
E
[
|P (x̄(N)(t)− x̄(t))|2

]
= O(1/N).

From (3.6), (3.7) and (A.3), we obtain

sup
0≤t≤T

E
[
|q̄(N)(t)− EF0 [q̄ii(t)]|2 = sup

0≤t≤T
E
[
|PC̄(x̄(N)(t)− x̄(t))|2

]
= O(1/N).

□474

Lemma A.2. Assume that (A1)-(A4) hold. Then, the following holds:475

(A.4)

sup
0≤t≤T

E|x(N)
∗ (t)− x̄(t)|2 = O(

1

N
),

sup
0≤t≤T

E|x∗i (t)− x̄i(t)|2 = O(
1

N
),

476

where x∗i , i = 1, · · · , N is the realized state under the control u∗i , i = 1, · · · , N .477

Proof. By (3.15) and (3.2), it can be verified that max1≤i≤N E
∫ T

0
(|x∗i |2+ |u∗i |2)dt ≤ c3. From (3.13), we have

d(x
(N)
∗ − x̄) = (Ā+G)(x

(N)
∗ − x̄)dt+

1

N

N∑
j=1

(Cx∗j +Du∗j + Ḡx
(N)
∗ + F̄ x∗0)dWj .

Similar to (A.3), we have478

E|x(N)
∗ − x̄|2 = O(1/N).(A.5)479

From (3.15) and (A.2),480

d(x∗i − x̄i) = [A(x∗i − x̄i) +G(x
(N)
∗ − x̄)]dt+ [C(x∗i − x̄i) + Ḡ(x

(N)
∗ − x̄)]dWi,481

with x∗i (0)− x̄i(0) = 0. Let Φi(t) be the solution to the following SDE:

dΦi(t) = AΦi(t)dt+ CΦi(t)dWi(t), Φi(0) = I.

Then, one can obtain482

x∗i − x̄i =

∫ t

0

Φi(t)Φ
†
i (s)G(x

(N)
∗ (s)− x̄(s))ds+

∫ t

0

Φi(t)Φ
†
i (s)Ḡ(x

(N)
∗ (s)− x̄(s))dWi(s).483

Note that E
∫ T

0
|ΦT

i (t)Φi(t)|dt < c. From (A.5), we have484

E|x∗i − x̄i|2 ≤2TE
∫ t

0

∣∣Φi(t)Φ
†
i (s)

∣∣2∣∣G(x(N)
∗ (s)− x̄(s))

∣∣2ds485

+ 2E
∫ t

0

∣∣Φi(t)Φ
†
i (s)

∣∣2∣∣Ḡ(x(N)
∗ (s)− x̄(s))

∣∣2ds = O(
1

N
).486

This completes the proof. □487
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Proof of Theorem 3.8. (For followers). We first prove that for u ∈ Uc, Jsoc(u) < ∞ implies that

E
∫ T

0
(|xi|2 + |ui|2)dt <∞, for all i = 1, · · · , N . In views of (A2), by [43] we have

δ0

N∑
i=1

E
∫ T

0

|ui|2dt− c0 ≤ Jsoc(u) <∞,

which implies
∑N

i=1 E
∫ T

0
|ui|2dt < c1. By (2.1) and Schwarz’s inequality [60],488

E|xi(t)|2 ≤ c2E
∫ t

0

|x(N)(τ)|2dτ + c3489

≤ c2
N

E
∫ t

0

N∑
j=1

|xj(τ)|2dτ + c3.490

By Gronwall’s inequality, we have
∑N

j=1 E|xj(t)|2 ≤ Nc3e
c2t ≤ Nc3e

c2T .491

Let x̃i = xi − x∗i , ũi = ui − u∗i and x̃(N) = 1
N

∑N
i=1 x̃i. Then, by (2.1) and (3.15), we get492

dx̃i =(Ax̃i +Gx̃(N) +Bũi)dt+ (Cx̃i + Ḡx̃(N) +Dũi)dWi, x̃i(0) = 0.(A.6)493

From (3.1), we have J
(N)
soc (u∗0, u) =

1
N

∑N
i=1(Ji(u

∗
0, u

∗) + J̃i(u
∗
0, ũ) + Ii), where494

J̃i(u
∗
0, ũ)

∆
= E

∫ T

0

[
|x̃i − Γx̃(N) − Γ1x̃0|2Q + |ũi|2R

]
dt495

+ E|x̃i(T )− Γ̂x̃(N)(T )− Γ̂1x̃0(T )|2H ,496

Ii = 2E
∫ T

0

[(
x∗i − Γx

(N)
∗ − Γ1x

∗
0

)T
Q
(
x̃i − Γx̃(N) − Γ1x̃0

)
+ ũTi Lu

∗
0 + ũTi Ru

∗
i

]
dt497

+ E
[(
x∗i (T )− Γ̂x

(N)
∗ (T )− Γ̂1x

∗
0(T )

)T
H
(
x̃i(T )− Γ̂x̃(N)(T )− Γ̂1x̃0(T )

)]
.498

By (A.6) and Itô’s formula,

N∑
i=1

E
[
x̃Ti (T )

(
Hx̄i(T )−HΓ̂x̄(T )−HΓ̂1

x∗0(T )
)]

=

N∑
i=1

E
[
x̃Ti (T )p̄i(T ))

]
=

N∑
i=1

E
∫ T

0

{
− x̃Ti

[
AT p̄i +GTEF0 [p̄i] + CT q̄ii + ḠTEF0 [q̄ii ] +Qx̄i −QΓEF0 [x̄i]

+ (Γ− I)TQΓ1x
∗
0

]
+ [Ax̃i +Gx̃(N) +Bũi]

T p̄i + [Cx̃i + Ḡx̃(N) +Dũi]
T q̄ii

}
dt

=E
∫ T

0

N∑
i=1

{
− x̃Ti

[
Qx̄i −QΓx̄+ (Γ− I)TQΓ1x

∗
0

]
− ũTi Ru

∗
i

}
dt

+

N∑
i=1

E
∫ T

0

x̃Ti
[
GT (p̄(N) − EF0 [p̄i])dt+ ḠT (q̄(N) − EF0 [q̄ii ])

]
dt.

From this and direct computations, one can obtain499

1

N

N∑
i=1

Ii =
1

N

N∑
i=1

2E
{∫ T

0

x̃Ti
[
Q(x∗i − x̄i)) +QΓ(x

(N)
∗ − x̄) +GT (p̄(N) − EF0

[
p̄i])

+ ḠT (q̄(N) − EF0 [q̄ii ])
]
dt+

[
x̃Ti (T )

(
H(x∗i (T )− x̄i(T ))−HΓ̂(x

(N)
∗ (T )− x̄(T ))

]}
≤ c

N

N∑
i=1

[
E
∫ T

0

|x̃i|2dt
]1/2

·
[
E
∫ T

0

(
|x∗i − x̄i|2 + |x(N)

∗ − x̄|2 + |p̄(N) − EF0

[
p̄i]|2

+ |q̄(N) − EF0 [q̄ii |2]
)
dt
]1/2

+O
( 1√

N

)
≤O

( 1√
N

)
= ϵ1.

500
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Note that by (A2),
∑N

i=1 J̃i(ũ, u
∗
0) ≥ 0. Then, we have Jsoc(u

∗, u∗0) ≤ Jsoc(u, , u
∗
0) + ϵ1.501

(For the leader). By (3.16) and Schwarz’s inequality, we have502

J0(u
∗
0, u

∗) =E
∫ T

0

[
|x̄∗0 − Γ0x̄+ Γ0(x

(N)
∗ − x̄)|2Q0

+ |u∗0|2R0

]
dt(A.7)503

+ E
[
|x̄∗0(T )− Γ̂0x̄(T ) + Γ̂0(x

(N)
∗ (T )− x̄(T ))|2H0

]
dt504

≤J̄0(u∗0, u∗) +
∫ T

0

[
2
(
E|x∗0 − Γ0x̄|2 · E|Q0Γ0(x

(N)
∗ − x̄)|2

)1/2
505

+ E|Γ0(x
(N)
∗ − x̄)|2Q0

]
dt+ E

[
|Γ̂0(x

(N)
∗ (T )− x̄(T ))|2H0

]
506

+ 2
(
E|x∗0(T )− Γ̂0x̄(T )|2 · E|H0Γ̂0(x

(N)
∗ (T )− x̄(T ))|2

)1/2
507

≤J̄0(u∗0, u∗) +O(1/
√
N).508

It follows from Theorem 3.5 that J̄0(u
∗
0, u

∗) ≤ J̄0(u0, u
∗). This together with (A.7) implies509

(A.8) J0(u
∗
0, u

∗(u∗0)) ≤ J̄0(u0, u(u0)) +O(1/
√
N),510

for any u0 ∈ U0. From (3.16), we obtain511

J̄0(u0, u) =E
∫ T

0

[
|x0 − Γ0x

(N)
∗ + Γ0(x

(N)
∗ − x̄)|2Q0

+ |u0|2R0

]
dt512

+ E
[
|x∗0(T )− Γ̄0x

(N)
∗ (T ) + Γ̄0(x

(N)
∗ (T )− x̄(T ))|2H0

]
dt513

≤J0(u0, u) +O(1/
√
N),514

which with (A.8) gives J0(u
∗
0, u

∗(u∗0)) ≤ J0(u0, u(u0)) + ε2, where ε2 = O(1/
√
N). □515

Appendix B. Proof of Theorem 3.9. To prove Theorem 3.9, we first give a lemma. Consider an516

MF-type problem: optimize the cost functional517

Ji(ui) =E
∫ T

0

(
|x̄i − ΓEF0 [x̄i]− Γ1x0|2Q + |ui|2R

)
dt+ E

[
|x̄i(T )− Γ̂EF0 [x̄i(T )]− Γ̂1x0(T )|2H

]
(B.1)518

subject to (x̄i(0) = ξi)519

dx̄i =(Ax̄i +Bui +GEF0 [x̄i] + Fx0)dt+ (Cxi +Dui + ḠEF0 [x̄i] + F̄ x0)dWi.(B.2)520

Lemma B.1. Assume (A1) and (A4) hold. For Problem (B.1)-(B.2), the optimal control u∗i is given by521

(3.7), and the corresponding optimal cost is E[|ξi|2P (0) + |ξ̄0|2K(0) + 2φT (0)x̄0] + sT .522

Proof. Note that EF0 [x̄i] = x̄ satisfies523

dx̄ =
[
(A+G)x̄+Bū+ Fx0

]
dt,(B.3)524

where ū = EF0 [ūi]. By a similar proof to [59], [49], we obtain525

Ji(ui) =E[|xi0 − x̄0|2P (0) + x̄T0 (P (0) +K(0))x̄0 + 2φT (0)x̄0] + sT526

+ E
∫ T

0

[
|ui − ū+Υ†(BTP +DTPC)(x̄i − x̄)|2Υ527

+ |ū+Υ†(BT (P +K) +DTP (C + Ḡ))x̄+BTφ+DTPF̄x0|2Υ
]
dt528

≥E[|ξi|2P (0) + |ξ̄0|2K(0) + 2φT (0)x̄0] + sT .529

□530
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Proof of Theorem 3.9. Applying the control (3.29) into the social cost, it follows that531

J (N)
soc (u∗, u∗0)532

=
1

N

N∑
i=1

E
[ ∫ T

0

(
|x∗i − Γx

(N)
∗ − Γ1x

∗
0|2Q + |u∗i |2R

)
dt+ |x∗i (T )− Γ̂x

(N)
∗ (T )− Γ̂1x

∗
0(T )|2H

]
533

=
1

N

N∑
i=1

E
{∫ T

0

[
|x̄i − Γx̄− Γ1x̄0 + x∗i − x̄i − Γ(x

(N)
∗ − x̄)− Γ1(x

∗
0 − x̄0)|2Q534

+ |Υ†(BTP +DTPC)x̄i + (BTK +DTPḠ)x̄+BTφ+DTPF̄ x̄0)|2R
]
dt535

+ |x̄i(T )− Γ̂x̄(T )− Γ̂1x̄0(T ) + x∗i (T )− x̄i(T )− Γ̂(x
(N)
∗ (T )− x̄(T ))− Γ1(x

∗
0(T )− x̄0(T ))|2H

}
.536

By Lemma A.2 and Schwarz’s inequality, one can obtain537

∣∣J (N)
soc (u

∗, u∗0)−
N∑
i=1

Ji(u
∗
i )
∣∣538

≤ 1

N

N∑
i=1

E
∫ T

0

[
|x∗i − x̄i|2Q + |Γ(x(N)

∗ − x̄)|2Q + |Γ1(x
∗
0 − x̄0)|2Q

]
dt+

c

N

N∑
i=1

sup
0≤t≤T

(
E|x∗i − x̄i|2Q

)1/2
539

+
C

N

N∑
i=1

sup
0≤t≤T

(
E|Γ(x(N)

∗ − x̄)|2Q
)1/2

+
c

N

N∑
i=1

sup
0≤t≤T

(
E|Γ1(x

∗
0 − x̄0)|2Q

)1/2
540

≤O(
1√
N

).541

This together with Lemma B.1 leads to (3.30).542

(For the leader) By a similar argument with the proof of Theorem 3.5, one can obtain

J̄0(u
∗
0, u

∗) = E
{
ξT0 y0(0) + ξ̄T ȳ(0) +

∫ T

0

[〈
R0u

∗
0 +BT

0 y0 + B̄T
1 ȳ, u

∗
0

〉]
dt
}
.

By (3.27), we have limN→∞ J0(u
∗
0, u

∗) = E
[
ξT0 y0(0) + ξ̄T ȳ(0)

]
. Thus, the theorem follows. □543

Appendix C. Proofs of Theorems 4.1 and 4.6.544

Proof of Theorem 4.1. Suppose that {ŭi, i = 1, · · · , N} is an optimal control of Problem (P3). Denote
by x̆i the state of player i under the optimal control ŭi. For any ui ∈ L2

F (0, T ;Rr) and λ ∈ R (λ ̸= 0), let
uλi = ŭi + λui, i = 1, · · · , N . Denote by xλ0 , x

λ
i the solution to the following perturbed equation:

dxλ0 =
[
A0x

λ
0 +B0(P0x

λ
0 + P̄ x

(N)
λ )

]
dt+

[
C0x

λ
0 +D0(P0x

λ
0 + P̄ x

(N)
λ )

]
dW0,

dxλi =
(
Axλi +B(ǔi + λui) +Gx

(N)
λ + Fxλ0

)
dt+

(
Cxλi +Duλi + Ḡx

(N)
λ + F̄ xλ0

)
dWi,

xλ0 (0) = ξ0, x
λ
i (0) = ξi, i = 1, 2, · · · , N,

with x
(N)
λ = 1

N

∑N
i=1 x

λ
i . Let zi = (xλi − x̌i)/λ. It can be verified that zi satisfies545 {

dz0 =
[
(A0 +B0P0)z0 +B0P̄ z

(N)
]
dt+

[
(C0 +D0P0)z0 +D0P̄ z

(N)
]
dW0, z0(0) = 0,

dzi =[Azi +Bui +Gz(N) + Fz0]dt+ [Czi +Dui + Ḡz(N) + F̄ z0]dWi, zi(0) = 0,
546

where i = 1, 2, · · · , N , and z(N) = 1
N

∑N
i=1 zi. From (4.2), we have547

(C.1) J (N)
soc (ŭ+ λu)− J (N)

soc (ŭ) = 2λI1 + λ2I2,548
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where549

I1 =
1

N

N∑
i=1

E
∫ T

0

[
x̆Ti Qzi − (x̆(N))TQΓz

(N) − x̆T0QΓ1
Γ̂T
1 z

(N) − (x̆(N))TQΓ1
z0(C.2)550

+ x̆T0 Γ
T
1QΓ1z0 + ŭiRui

]
dt+

N∑
i=1

E
[
x̆Ti (T )Hzi(T )− (x̆(N)(T ))THΓ̂z

(N)(T )551

− x̆T0 (T )H
T
Γ̂1
z(N)(T )− [x̆(N)(T )]THΓ̂1

z0(T ) + x̆T0 (T )Γ̂
T
1HΓ̂1z0(T )

]
,552

553

I2 =
1

N

N∑
i=1

E
∫ T

0

[
|zi|2Q − |z(N)|2QΓ

− 2ΓzT0 Q
T
Γ1
z(N) + zT0 Γ

T
1QΓ1z0 + |ui|2R

]
dt(C.3)554

+

N∑
i=1

E
[
|zi(T )|2H − |z(N)(T )|2HΓ̂

− 2(z0(T ))
THT

Γ̂1
z(N)(T ) + |z0(T )|2Γ̂T

1 HΓ̂1

]
.555

Let {p̆i, q̆ji , i, j = 0, 1, · · · , N} be a set of solutions to (4.3). Then, by Itô’s formula, we obtain556

N∑
i=1

E
[
⟨Γ̂T

1H(Γ̂− I)x̆(N)(T ) + Γ̂T
1HΓ̂1x̆

T
0 (T ), z0(T )⟩

]
557

=

N∑
i=1

E[⟨p̆0(T ), z0(T )⟩ − ⟨p̆0(0), z0(0)⟩]558

=

N∑
i=1

E
∫ T

0

{〈
−
[
(A0 +B0P0)

T p̆0 + FT p̆(N) + (C0 +D0P0)
T q̆00 + F̄T q̆(N)

559

− ΓT
1Q((I − Γ)x̆(N) − Γ1x̆0)

]
, z0

〉
+ ⟨p̆0, (A0 +B0P0)z0 +B0P̄ z

(N)⟩560

+ ⟨q̆00 , (C0 +D0P0)z0 +D0P̄ z
(N)⟩

}
dt561

=

N∑
i=1

E
∫ T

0

{〈
− [F p̆(N) + F̄ q̆(N) − ΓT

1Q((I − Γ)x̆(N) − Γ1x̆0)], z0
〉

562

+ ⟨P̄TBT
0 p̆0 + P̄TDT

0 q̆
0
0 , zi

〉}
dt,563

and564

N∑
i=1

E[⟨Hx̆i(T )−HΓ̂x̆
(N)(T ) + (Γ̂− I)THΓ̂1x̆0(T ), zi(T )⟩]565

=

N∑
i=1

E
∫ T

0

{〈
−
[
Qx̆i −QΓx̆

(N) + (Γ− I)TQΓ1x̆0 + P̄TBT
0 p̆0 + P̄TDT

0 q̆
0
0

]
, zi

〉
566

+ ⟨F p̆(N) + F̄ q̆(N), z0⟩+ ⟨BT p̆i +DT q̆ii , ui⟩
}
dt,567

where the second equation holds since
∑N

i=1 E⟨GT p̆(N), zi⟩ =
∑N

i=1 E⟨p̆i, Gz(N)⟩ and
∑N

i=1 E⟨ḠT q̆(N), zi⟩ =568 ∑N
i=1 E⟨q̆ii , Ḡz(N)⟩. From the above equations and (C.2),569

I1 =
1

N

N∑
i=1

E
∫ T

0

[〈
Qx̆i −QΓx̆

(N) + (Γ− I)TQΓx̆0, zi
〉
+ ⟨ΓT

1Q(Γ− I)x̆(N) + ΓT
1QΓ1x̆0, z0⟩570

+ ⟨Rŭi, ui⟩
]
dt+

N∑
i=1

E
[〈
Hx̆i(T )−HΓ̂x̆

(N)(T ) + (Γ̂− I)THΓ̂x0(T ), zi(T )
〉

571

+
〈
Γ̂T
1H(Γ̂− I)x̆(N)(T ) + Γ̂T

1HΓ̂1x̆
T
0 (T ), z0(T )

〉]
572

=
1

N

N∑
i=1

E
∫ T

0

[⟨Rŭi +BT p̆i +DT q̆ii , ui⟩]dt.(C.4)573
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Note that Q−QΓ = (I − Γ)TQ(I − Γ) and H −HΓ̂ = (I − Γ̂)TH(I − Γ̂). Then, we have

I2 =
1

N

N∑
i=1

E
∫ T

0

[
|zi − z(N)|2Q + |z(N)|2Q−QΓ

+ 2(Γz0)
TQ(Γ− I)z(N) + |Γ1z0|2Q + |ui|2R

]
dt

+

N∑
i=1

E
[
|zi(T )− z(N)(T )|2H + |z(N)(T )|2H−HΓ̂

− 2zT0 (T )H
T
Γ̂1
z(N)(T ) + |Γ̂1z0(T )|2H

]
=

1

N

N∑
i=1

E
∫ T

0

[
|zi − z(N)|2Q + |(I − Γ)z(N) − Γ1z0|2Q + |ui|2R

]
dt

+

N∑
i=1

E
[
|zi(T )− z(N)(T )|2H + |(I − Γ̂)z(N)(T )− Γ̂1z0(T )|2H

]
.

Since Q ≥ 0, R > 0, and H ≥ 0, we obtain I2 ≥ 0. From (C.1), ŭ is a minimizer to (P1) if and only if I1 = 0,574

which is equivalent to Rŭi + BT p̆i + DT q̆ii = 0, i = 1, · · · , N. Thus, we have the optimality system (4.3).575

This implies that (4.3) admits a solution (x̌i, p̌i, q̌
j
i , i, j = 1, · · · , N). □576

Proof of Theorem 4.6. (For followers). By (2.6), it can be verified that under feedback strategies (2.5),

E
∫ T

0
(|x0|2 + |x̄|2)dt < c. This further gives E

∫ T

0
(|xi|2 + |x(N)|2)dt < c1. Besides, from (2.6), we have

d(x(N) − x̄) =(A+G+BK̂)(x(N) − x̄)dt

+
1

N

N∑
j=1

[(C +DK̂)xi + Ḡx(N) +DK̂x̄+ (F̄ +DK0)x0]dWj ,

Similar to (A.3), we have for any t ∈ [0, T ],577

E|x(N)(t)− x̄(t)|2 ≤
∣∣Φ̄(t, 0)∣∣2E|x(N)(0)− x̄(0)|2578

+
1

N2

N∑
i=1

∫ t

0

c
∣∣Φ̄(t, s)∣∣ max

1≤i≤N
E
(
|xi|2 + |x(N)|2 + |x̄|2 + |x0|2)ds = O(

1

N
),(C.5)579

where Φ̄(t, s) satisfies dΦ̄(t,s)
dt = (A + G + BK̂)Φ̄(t, s), Φ̄(s, s) = I. Note that x̄ = E[xi|F0] = E[x(N)|F0]580

(which follows from (2.6)). Then, we have581

(C.6) E[x̄T (x(N) − x̄)] = E
[
x̄TE[x(N) − x̄|F0]

]
= 0.582

From (2.3) and (C.5), we have583

J (N)
soc (u0, u) =

1

N

N∑
i=1

E
∫ T

0

[
|xi|2Q − |x(N)|2QΓ

− 2xT0Q
T
Γ̂1
x(N) + |Γ1x0|2Q + |ui|2R

]
dt(C.7)584

+
1

N

N∑
i=1

E
[
|xi(T )|2H − |x(N)(T )|2HΓ̂

− 2(HΓ̂1
x0(T ))

T x̄(T ) + |Γ1x0(T )|2H
]

585

≤ 1

N

N∑
i=1

E
∫ T

0

[
|xi|2Q − |x̄|2QΓ

− 2xT0Q
T
Γ̂1
x̄+ |Γ1x0|2Q + |ui|2R

]
dt586

+
1

N

N∑
i=1

E
[
|xi(T )|2H − |x̄(T )|2HΓ̂

− 2(HΓ̂1
x0(T ))

T x̄(T ) + |Γ1x0(T )|2H
]
+ ϵ1587

∆
=J̄ (N)

soc (u0, u) + ϵ1.588

We now deform J̄
(N)
soc (u0, u) by the method of completing squares. Note that x̄ = E[xi|F0] satisfies589

(C.8) dx̄ = [(A+G)x̄+Bū+ Fx0]dt,590
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where ū = E[ui|F0]. Then, it follows that

d(xi − x̄) =[A(xi − x̄) +B(ui − ū) +G(x(N) − x̄)]dt+ (Cxi +Dui + Ḡx(N) + F̄ x0)dWi.

From (C.6), applying Itô’s formula to |xi − x̄|2M , we obtain591

E
[
|xi(T )− x̄(T )|2H − |xi(0)− x̄(0)|2M(0)

]
(C.9)592

=E
∫ T

0

{
(xi − x̄)T (Ṁ +ATM +MA+ CTMC)(xi − x̄) + (ui − ū)TDTMD(ui − ū)593

+ 2(ui − ū)T (BTM +DTMC)(xi − x̄) + ūTDTMDū+ xT0 F̄
TMF̄x0594

+ x̄T (C +G)TM [(C + Ḡ)x̄+ 2F̄ x0] + 2ūTDTM [(C + Ḡ)x̄+ F̄ x0]595

+ 2(x(N) − x̄)T [(ḠTMC +GTM)(xi − x̄) + ḠTMD(ui − ū)]
}
dt.596

It follows by (C.8) that597

E
[
x̄T (T )(H −HΓ̂)x̄(T )− x̄T (0)(M(0) + M̄(0))x̄(0)

]
(C.10)598

=E
∫ T

0

{
x̄T [Ṁ + ˙̄M + (A+G)T (M + M̄) + (M + M̄)(A+G)]x̄599

+ 2x̄T (M + M̄)Bū+ 2x̄T (M + M̄)Fx0
}
dt.600

By (2.6) and Itô’s formula,601

E
[
xT0 (T )Γ̂

T
1HΓ̂1x0(T )− xT0 (0)Λ

0(0)x0(0)
]

(C.11)602

=E
∫ T

0

{
xT0 [Λ̇

0 + (A0 +B0P0)
TΛ0 + Λ0(A0 +B0P0) + (C0 +D0P0)

TΛ0(C0 +D0P0)]x0603

+ 2xT0 [Λ
0B0P̄ + (C0 +D0P0)

TΛ0D0P̄ ]x̄+ 2x̄T P̄TDT
0 Λ

0D0P̄ x̄
}
dt.604

Applying Itô’s formula to xT0 Λ̄x̄ and x̄TM0x0, we have605

E
[
− xT0 (T )H

T
Γ̂1
x̄(T )− xT0 (0)Λ̄(0)x̄(0)

]
(C.12)606

=E
∫ T

0

{
xT0 [

˙̄Λ + Λ̄(A+G) + (A0 +B0P0)
T Λ̄]x̄+ xT0 Λ̄(Bū+ Fx0) + x̄T P̄TBT

0 Λ̄x̄
}
dt,607

and608

E
[
− x̄T (T )HΓ̂1

x0(T )− x̄T (0)M0(0)x0(0)
]

(C.13)609

=E
∫ T

0

{
x̄T [Ṁ0 + (A+G)TM0 +M0(A0 +B0P0)]x̄+ (Bū+ Fx0)

TM0x0 + x̄TM0B0P̄ x̄
}
dt.610
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From (4.12), (C.9)-(C.13), one can obtain611

J̄ (N)
soc (u0, u)612

=
1

N

N∑
i=1

E
∫ T

0

[
|xi − x̄|2Q + |x̄|2Q−QΓ

+ 2[(Γ− I)TQΓ1x0]
T x̄+ |Γ1x0|2Q + |ui − ū|2R + |ū|2R

]
dt613

+
1

N

N∑
i=1

E
[
|xi(T )− x̄(T )|2H + |x̄(T )|2H−HΓ̂

+ 2[(Γ̂− I)THΓ̂1x0(T )]
T x̄(T ) + |Γ1x0(T )|2H

]
614

=
1

N

N∑
i=1

E
[
|xi(0)− x̄(0)|2M(0) + |x̄(0)|2M(0)+M̄(0) + 2xT0 (0)Λ̄(0)x

(N)(0) + |x0(0)|2Λ0(0)

]
615

+
1

N

N∑
i=1

E
∫ T

0

{
(xi − x̄)TΨTΥ−1Ψ(xi − x̄) + (ui − ū)TΥ(ui − ū) + 2(ui − ū)TΨ(xi − x̄)616

+ ūTΥū+ x̄T (Ψ + Ψ̄)TΥ−1(Ψ + Ψ̄)x̄+ 2ūT [(Ψ + Ψ̄)x̄+Ψ0x0] + (Ψ0x0)
TΥ−1Ψ0x0617

+ 2x̄T (Ψ + Ψ̄)TΥ−1Ψ0x0 + 2(x(N) − x̄)T [(ḠTMC +GTM)(xi − x̄) + ḠTMD(ui − ū)]
}
dt618

=
1

N

N∑
i=1

E
[
|ξi|2M(0) + |ξ̄|2M̄(0) + 2ξT0 Λ̄(0)ξi + |ξ0|2Λ0(0)

]
619

+
1

N

N∑
i=1

E
∫ T

0

{
|ui − ū+Υ−1Ψ(xi − x̄)|2Υ + |ū+Υ−1[(Ψ + Ψ̄)x̄+Ψ0x0]|2Υ620

+ 2(x(N) − x̄)T [ḠTMC +GTM ](xi − x̄) + ḠTMD(ui − ū)]
}
dt621

≥ 1

N

N∑
i=1

E
[
|ξi|2M(0) + |ξ̄|2M̄(0) + 2ξT0 Λ̄(0)ξi + |ξ0|2Λ0(0)

]
622

+
1

N

N∑
i=1

E
∫ T

0

2(x(N) − x̄)T [(ḠTMC +GTM)(xi − x̄) + ḠTMD(ui − ū)]dt.623

Note that ûi = −Υ−1(Ψxi + Ψ̄x̄ + Ψ0x0). From (C.5) and (C.7), we have J
(N)
soc (û0, û) ≤ J

(N)
soc (û0, u) + ϵ1,624

where ϵ1 = O(1/
√
N).625

(For the leader). From (2.2), we have626

J0(û0, û(û0)) ≤J̄0(û0, û(û0)) + E
∫ T

0

[
2
(
|x0(t)− Γ0x̄(t)|2|Q0Γ0(x̂

(N)(t)− x̄(t))|2
)1/2

(C.14)627

+ |Γ0(x̂
(N)(t)− x̄(t))|2Q0

]
dt+ |Γ̂0(x̂

(N)(T )− x̄(T ))|2H0

]
628

+ 2E
[(
|x0(T )− Γ̂0x̄(T )|2|H0Γ̂0(x̂

(N)(T )− x̄(T ))|2
)1/2

629

≤J̄0(û0, û(û0)) +O(1/
√
N).630

By Itô’s formula, one can obtain631

E[xT0 (T )H0x0(T )]− E[xT0 (0)Θ1(0)x0(0)](C.15)632

=E
∫ T

0

[
xT0 (Θ̇1 +AT

0 Θ1 +Θ1A0 + CT
0 Θ1C0)x0 + 2uT0 (B

T
0 Θ1 +DT

0 Θ1C0)x0
]
dt,633

E[x̄T (T )Γ̂T
0H0Γ̂0x̄(T )]− E[x̄T (0)Θ2(0)x̄(0)] = E

∫ T

0

[
x̄T (Θ̇2 + ÂTΘ2 +Θ2Â)x̄+ 2xT0 F̂

TΘ2x̄
]
dt,634

and635

E[x̄T (T )(−Γ̂T
0H0)x0(T )]− E[x̄T (0)Θ3(0)x0(0)](C.16)636

=E
∫ T

0

[
x̄T (Θ̇3 + ÂTΘ3 +Θ3A0)x0 + x̄TΘ3B0u0 + xT0 F̂

TΘ3x0
]
dt.637
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It follows from (C.15)-(C.16) that638

J̄0(u0, u(u0)) =E[xT0 (0)Θ1(0)x0(0) + x̄T (0)Θ2(0)x̄(0) + x̄T (0)Θ3(0)x0(0)](C.17)639

+ E
∫ T

0

[
xT0 (B

T
0 Θ1 +DT

0 Θ1C0)
TΞ−1(BT

0 Θ1 +DT
0 Θ1C0)x0640

+ x̄TΘ3B0Ξ
−1BT

0 Θ3x̄+ 2x̄TΘ3B0Ξ
−1(BT

0 Θ1 +DT
0 Θ1C0)x0641

+ 2uT0 [(B
T
0 Θ1 +DT

0 Θ1C0)x0 +BT
0 Θ3x̄] + uT0 Ξu0

]
dt642

=E[ξT0 Θ1(0)ξ0 + ξ̄TΘ2(0)ξ̄ + ξ̄TΘ3(0)ξ0] + E
∫ T

0

[∣∣u0643

+ Ξ−1(BT
0 Θ1 +DT

0 Θ1C0)x0 + Ξ−1BT
0 Θ3x̄

∣∣2
Ξ

]
dt644

≥E[ξT0 Θ1(0)ξ0 + ξ̄TΘ2(0)ξ̄ + ξ̄TΘ3(0)ξ0] = J̄0(û0, û(û0)).645

This together with (C.14) leads to J0(û0, û(û0)) ≤ J̄0(u0, u(u0)) + O(1/
√
N). The reminder of the proof is646

similar to that of Theorem 3.8. □647
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